John Mulchaey and Yixian Zheng named interim co-presidents

Carnegie Observatories Director John Mulchaey and Carnegie Embryology Director Yixian Zheng jointly will serve in the Office of the President on an interim basis starting January 1, 2018. Their selection as interim co-presidents was a unanimous decision of the Carnegie Board of Trustees. 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

Without eyes, ears, or a central nervous system, plants can perceive the direction of environmental cues and respond to ensure their survival. For example, roots need to extend through the maze of nooks and crannies in the soil toward sources of water and nutrients. The various ways that plants guide this branching to take advantage of their environment is of great interest to scientists and of potential use by farmers in need of crops that produce more food with fewer resources.

Explore this Story

How far away is that galaxy? 

Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out to be fiendishly difficult to answer. The best answer came more than 100 years ago from an astronomer who was mostly unrecognized in her time—and last year a Carnegie Observatories summer student made those distance measurements more precise than ever. 

Explore this Story

Astronomers with the Sloan Digital Sky Survey (SDSS), including Carnegie's Johanna Teske, have learned that the chemical composition of a star can exert unexpected influence on its planetary system.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Many people have heard of Pangaea, the supercontinent that included all continents on Earth and began to break up about 175 million years ago. But before Pangaea, Earth’s landmasses ripped apart and smashed back together to form supercontinents repeatedly. This cycle has been going on for at least the last 3.0 billion years of Earth’s history, regulating our planet’s geography, climate, and carbon cycles.

Explore this Story
  • A team of astronomers led by Carnegie’s Eduardo Bañados used Carnegie’s Magellan telescopes to discover the most-distant supermassive black hole ever observed. It resides in a luminous quasar and its light reaches us from when the universe was only 5 percent of its current age—just 690 million years after the Big Bang. Their findings are published by Nature.

    Explore this Story
Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is...
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center...
Explore this Project
Capital Science Evening Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Julia Clarke, University of Texas
Thursday, March 29, 2018 - 6:30pm to 8:00pm

How do we go beyond the bones to bring dinosaurs to life? Dr. Clarke will explain the new toolkits she uses to  study what dinosaurs might have sounded or looked like when they roamed the Earth....

Explore this Event
Capital Science Evening Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Oregon State University, Joy Leighton
Wednesday, April 25, 2018 - 6:30pm to 8:00pm

Can we use the ocean without using it up? The task is daunting given current trajectories in fisheries, plastics, and other pollutants, and the impacts of climate change and ocean acidification. ...

Explore this Event
Capital Science Evening Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, University of Bristol
Wednesday, May 9, 2018 - 6:30pm to 8:00pm

Looking upward, the vastness of the heavens are accessible through giant telescopes that collect light from the beginning of time. Turn a telescope downward and the opaqueness of our planet...

Explore this Event
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is...
Meet this Scientist
John Mulchaey, director of the Observatories, serves as co-interim president of Carnegie as of January 1, 2018. He investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also a...
Meet this Scientist

Explore Carnegie Science

January 16, 2018

WASHINGTON, D.C. – US2020, a  nationwide network of more than 350 organizations to advance the STEM (Science, Technology, Engineering and Math) fields, chose the DC STEM Network as one of 15 finalists for the STEM Coalition Challenge.  Ninety-two partner networks, working to advance STEM mentoring and learning to underrepresented students, competed. The finalists will compete for $1-million in resources to implement their innovative approaches to STEM teaching and learning.  

The DC STEM Network is a collaboration between the Carnegie Science’s education arm, Carnegie Academy for Science Education (CASE) and the DC Office of the State Superintendent of Education (OSSE). The

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Stanford University
January 9, 2018

Washington, DC— Without eyes, ears, or a central nervous system, plants can perceive the direction of environmental cues and respond to ensure their survival.

For example, roots need to extend through the maze of nooks and crannies in the soil toward sources of water and nutrients. The various ways that plants guide this branching to take advantage of their environment is of great interest to scientists and of potential use by farmers in need of crops that produce more food with fewer resources.

Carnegie and Stanford University biologist José Dinneny has spent years studying how root growth responds to water, particularly through a phenomenon called hydropatterning, which

January 9, 2018

National Harbor, MD—How far away is that galaxy? 

Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out to be fiendishly difficult to answer. The best answer came more than 100 years ago from an astronomer who was mostly unrecognized in her time—and today, another astronomer has used Sloan Digital Sky Survey (SDSS) data to make those distance measurements more precise than ever. 

"It's been fascinating to work with such historically significant stars," says Kate Hartman, an undergraduate from Pomona College who announced the results at today’s American Astronomical Society (AAS) meeting in

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Sloan Digital Sky Survey, SDSS-IV
January 9, 2018

National Harbor, MD—Astronomers with the Sloan Digital Sky Survey (SDSS) have learned that the chemical composition of a star can exert unexpected influence on its planetary system—a discovery made possible by an ongoing SDSS survey of stars seen by NASA's Kepler spacecraft, and one that promises to expand our understanding of how extrasolar planets form and evolve.

"Without these detailed and accurate measurements of the iron content of stars, we could have never made this measurement," says Robert Wilson, a graduate student in astronomy at the University of Virginia and lead author of the paper announcing the results.

The team presented their results today at the American

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Julia Clarke, University of Texas
March 29, 2018

How do we go beyond the bones to bring dinosaurs to life? Dr. Clarke will explain the new toolkits she uses to  study what dinosaurs might have sounded or looked like when they roamed the Earth.

Dr. Julia Clarke: Wilson Professor of Vertebrate Paleontology & HHMI Professor, Jackson School of Geosciences, The University of Texas at Austin

#DinosaurBones

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Oregon State University, Joy Leighton
April 25, 2018

Can we use the ocean without using it up? The task is daunting given current trajectories in fisheries, plastics, and other pollutants, and the impacts of climate change and ocean acidification.  However, new scientific insights, tools, and partnerships are providing hope that it’s not too late to transition to more-sustainable practices and policies.  Dr. Lubchenco wuill draw on her four years as the Under Secretary of Commerce for Oceans and Atmosphere and the Administrator of the U.S. National Oceanic and Atmospheric Administration (NOAA), her two years as the first U.S. Science Envoy for the Ocean, and her decades of research around the world to summarize the importance to people of

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, University of Bristol
May 9, 2018

Looking upward, the vastness of the heavens are accessible through giant telescopes that collect light from the beginning of time. Turn a telescope downward and the opaqueness of our planet conceals the secrets of its origin and evolution. Diamonds, those translucent rarities, illuminate the depths of our planet and reveal connections between the deep earth and the surface of our planet through both time and space.

Dr. Michael Walter: Incoming Director, Carnegie Geophysical Laboratory

#DiamondScience

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, MIT
June 12, 2018

The direct measurement of gravitational waves predicted by Albert Einstein 100 years ago has open a new field of science – gravitational wave astrophysics and astronomy. The recent discoveries and the prospects for the new field will be presented.

Dr. Rainer Weiss: Emeritus Professor of Physics, MIT, on behalf of the LIGO Scientific Collaboration

#GravitationalWaves

DC Stem Network

The DC STEM Network unites community partners to help inspire and prepare all DC youth to succeed, lead, and innovate in STEM fields and beyond. The Network connects educators, industry experts, community organizations, and colleges to support STEM learning across the city. The Network was formed in October 2014 through a partnership between Carnegie Science’s Carnegie Academy for Science Education and the DC Office of the State Superintendent of Education.  Over 200 community partners have already engaged in the effort to enhance STEM learning opportunities for DC students and teachers within the classroom, outside of the classroom and in the workplace.

This past year, the

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the

Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile, and the first of two cameras for the Magellan Baade telescope. Magellan consortium astronomers use the Baade camera for various IR-imaging projects, while his group focuses on distant galaxies and supernovae.

Until recently, it was difficult to find large numbers of galaxies at near-IR wavelengths. But significant advances in the size of IR detector arrays have allowed the Persson group to survey

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive types of

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de facto