Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Youtube URL: 

    Earthquakes, floods, tsunamis, hurricanes, and volcanoes—they all stem from the very same forces that give our planet life. It is only when these forces exceed our ability to withstand them that they become disasters. Science and engineering can be used to understand extreme events and to design our cities to be resilient, but we must overcome the psychological drive to normalization that keeps humanity from believing that we could experience anything worse than what we have already survived.

    Watch This Video

Carnegie’s Winslow Briggs, a giant in the field of plant biology who explained how seedlings grow toward light, died on February 11 at Stanford University Medical Center. He was 90.

Explore this Story

The density of rock layers on the terrain that climbs from the base of Mars’ Gale Crater to Mount Sharp is less dense than expected, according to the latest report on the Red Planet’s geology from a team of scientists including Carnegie’s Shaunna Morrison. 

Explore this Story

China is the world’s largest producer and consumer of coal. Ambitious Chinese regulations on coal mining that took effect in 2010 have not curbed the nation’s growing methane emissions as intended, says new research from a team led by Carnegie’s Scot Miller and Anna Michalak. 

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Carnegie's Juna Kollmeier and Université de Bordeaux's Sean Raymond kicked off an internet firestorm late last year when they posted a draft of their article about submoons on a preprint server. The online conversation obsessed over the best term to describe such phenomena.  But nomenclature was not the point of Kollmeier and Raymond’s investigation, who set out to define the physical parameters for moons that would be capable of being stably orbited by other, smaller moons.

Explore this Story
Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and...
Explore this Project
Capital Science Evening Lectures
Wednesday, February 20, 2019 - 6:30pm to 7:45pm

Over the past few years, Dr. Sheppard and his team have been performing the largest and deepest survey ever attempted of our Solar System’s fringes. In December 2018, he...

Explore this Event
Capital Science Evening Lectures
Tuesday, March 5, 2019 - 6:30pm to 7:45pm

Entrepreneur and inventor Dr. Rothblatt cofounded Sirius Satellite Radio and then pivoted to establish biotech company United Therapeutics in an effort to save her daughter’s life from...

Explore this Event
Astronomy Lecture Series
Monday, March 18, 2019 - 7:00pm to 8:45pm

Astronomers have mapped almost the entire history of our universe, from the Big Bang to the present day. One last frontier remains, an epoch known as cosmic dawn, when the first stars and galaxies...

Explore this Event
Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this...
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30...
Meet this Scientist

Explore Carnegie Science

Artist's conception. Credit Rensselaer Polytechnic Institute
February 14, 2019

Washington, DC—Carnegie’s Andrew Steele is a member of the Earth First Origins project, led by Rensselaer Polytechnic Institute’s Karyn Rogers, which has been awarded a $9 million grant by NASA’s Astrobiology Program.

The five-year project seeks to uncover the conditions on early Earth that gave rise to life by identifying, replicating, and exploring how prebiotic molecules and chemical pathways could have formed under realistic early Earth conditions.

The evolution of planet Earth and the emergence of life during its first half-billion years are inextricably linked, with a series of planetwide transformations – formation of the ocean,

February 12, 2019

Washington, DC— Carnegie’s Winslow Briggs, a giant in the field of plant biology who explained how seedlings grow toward light, died on February 11 at Stanford University Medical Center. He was 90.

Briggs joined Carnegie as the Director of the Department of Plant Biology in 1973 after teaching both at Harvard University—where he completed his bachelor’s degree, master’s degree, and Ph.D.—and at Stanford University. He held the position for two decades, establishing himself as a global leader in plant genetics and physiology, publishing landmark research on the molecular mechanisms that plants and other organisms use to sense and respond to light

Self-portrait of NASA's Curiosity Mars rover on Vera Rubin Ridge with Mount Sharp poking up just behind the vehicle's mast. Image is courtesy of NASA/JPL-Caltech/MSSS Curiosity.
January 31, 2019

Washington, DC—The density of rock layers on the terrain that climbs from the base of Mars’ Gale Crater to Mount Sharp is less dense than expected, according to the latest report on the Red Planet’s geology from a team of scientists including Carnegie’s Shaunna Morrison. Their work is published in Science.

Scientists still aren't sure how this mountain grew inside of the crater, which has been a longstanding mystery. 

One idea is that sediment once filled Gale Crater and was then worn away by millions of years of wind and erosion, excavating the mountain. However, if the crater had been filled to the brim, the material on the bottom, which

Coal mine, public domain
January 29, 2019

Washington, DC—Chinese regulations on coal mining have not curbed the nation’s growing methane emissions as intended, says new research from a team led by Carnegie’s Scot Miller and Anna Michalak. Their findings are published in Nature Communications.

China is the world’s largest producer and consumer of coal, which is used to generate more than 70 percent of its electricity. It also emits more methane than any other nation, and the coal sector accounts for about 33 percent of this total. This happens when underground pools of methane gas are released during the mining process.

In the atmosphere, methane acts as a greenhouse gas, trapping heat

February 20, 2019

Over the past few years, Dr. Sheppard and his team have been performing the largest and deepest survey ever attempted of our Solar System’s fringes. In December 2018, he announced the most-distant object ever observed in our Solar System. His team’s work has shown that the farthest-out-there objects—beyond the Kuiper Belt and the influence of the known major planets—are strangely grouped together in space. This suggests the existence of a yet-unobserved planet, sometimes called Planet X or Planet 9, more massive than the Earth, which is shaping the current orbits of these objects. Dr. Sheppard will 

March 5, 2019

Entrepreneur and inventor Dr. Rothblatt cofounded Sirius Satellite Radio and then pivoted to establish biotech company United Therapeutics in an effort to save her daughter’s life from pulmonary arterial hypertension. The company now has five drugs on the market—which have drastically improved survival outcomes for the disease—and it is currently innovating to reduce the number of patients who die waiting for a lung or kidney transplant. Her guiding philosophy is finding ways to “turn a Moonshot into an Earthshot,” in this case how to tackle the goal of an unlimited organ supply by developing procedures to increase the number of donated organs that are in

March 18, 2019

Astronomers have mapped almost the entire history of our universe, from the Big Bang to the present day. One last frontier remains, an epoch known as cosmic dawn, when the first stars and galaxies were born and changed the universe forever. Dr. Ji will take us on a short tour of the early history of our universe and explain how we obtain glimpses of this era.

Dr. Alex Ji: Hubble Fellow, Carnegie Observatories

#CosmicDawn

April 1, 2019

Popular images of galaxies, while beautiful, do not provide the information that astronomers need to measure their inherent properties, such as their dynamics and the compositions of their stars and gases. Using the latest technological advances, Dr. McGurk is building a new, custom-designed instrument for Carnegie Observatories' Magellan Telescopes, which will reveal the universe in extreme detail–making it possible to efficiently create 3-D maps of galaxies, nebulae, and more.

Dr. Rosalie McGurk: Fellow in Instrumentation, Carnegie Observatories

#GalaxyMap

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

The Carnegie Airborne Observatory (CAO), developed by GregAsner, is a fixed-wing aircraft that sweeps laser light across the vegetation canopy to image it in brilliant 3-D. The data can determine the location and size of each tree at a resolution of 3.5 feet (1.1 meter), a level of detail that is unprecedented. By combining field surveys with this airborne mapping and high-resolution satellite monitoring the team has been able to detail myriad ecological features of forests around the world.

As one example, Carnegie scientists with the Peruvian Ministry of Environment mapped the true extent of gold mining in the biologically diverse region of Madre de Dios in the Peruvian Amazon.

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

Dave Mao, now retired, has focused on ultra-high pressure physics, chemistry, material sciences, geophysics, geochemistry and planetary sciences using diamond-anvil cell techniques that he has pioneered.

Mao pioneered the diamond anvil cell, an instrument designed to subject materials to high pressures and temperatures by squeezing matter between two diamond tips. Over the years Mao has improved on both the diamond anvil cell and measurement instrumentation that reveals the properties of materials as they undergo extreme conditions. He has made many important discoveries about the chemical, structural, and other physical characteristics of matter along the way. 

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive