John Mulchaey and Yixian Zheng named interim co-presidents

Carnegie Observatories Director John Mulchaey and Carnegie Embryology Director Yixian Zheng jointly will serve in the Office of the President on an interim basis starting January 1, 2018. Their selection as interim co-presidents was a unanimous decision of the Carnegie Board of Trustees. 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

WASHINGTON, D.C. – US2020, a  nationwide network of more than 350 organizations to advance the STEM (Science, Technology, Engineering and Math) fields, chose the DC STEM Network as one of 15 finalists for the STEM Coalition Challenge.  Ninety-two partner networks, working to advance STEM mentoring and learning to underrepresented students, competed.

Explore this Story

Without eyes, ears, or a central nervous system, plants can perceive the direction of environmental cues and respond to ensure their survival. For example, roots need to extend through the maze of nooks and crannies in the soil toward sources of water and nutrients. The various ways that plants guide this branching to take advantage of their environment is of great interest to scientists and of potential use by farmers in need of crops that produce more food with fewer resources.

Explore this Story

How far away is that galaxy? 

Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out to be fiendishly difficult to answer. The best answer came more than 100 years ago from an astronomer who was mostly unrecognized in her time—and last year a Carnegie Observatories summer student made those distance measurements more precise than ever. 

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Astronomers with the Sloan Digital Sky Survey (SDSS), including Carnegie's Johanna Teske, have learned that the chemical composition of a star can exert unexpected influence on its planetary system.

Explore this Story
Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the...
Explore this Project
Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood.  The...
Explore this Project
The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs....
Explore this Project
Capital Science Evening Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Julia Clarke, University of Texas
Thursday, March 29, 2018 - 6:30pm to 8:00pm

How do we go beyond the bones to bring dinosaurs to life? Dr. Clarke will explain the new toolkits she uses to  study what dinosaurs might have sounded or looked like when they roamed the Earth....

Explore this Event
Capital Science Evening Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Oregon State University, Joy Leighton
Wednesday, April 25, 2018 - 6:30pm to 8:00pm

Can we use the ocean without using it up? The task is daunting given current trajectories in fisheries, plastics, and other pollutants, and the impacts of climate change and ocean acidification. ...

Explore this Event
Capital Science Evening Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, University of Bristol
Wednesday, May 9, 2018 - 6:30pm to 8:00pm

Looking upward, the vastness of the heavens are accessible through giant telescopes that collect light from the beginning of time. Turn a telescope downward and the opaqueness of our planet...

Explore this Event
Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30...
Meet this Scientist
Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature...
Meet this Scientist
Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental...
Meet this Scientist

Explore Carnegie Science

January 18, 2018

Washington, DC— Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it can be a tool to study the history of our universe, galaxy, and Solar System.

For example, astronomers have been trying to explain why some recently discovered distant, but young, galaxies contain massive amounts of dust. These observations indicate that type II supernovae—explosions of stars more than ten times as massive as the Sun—produce copious amounts of dust, but how and when they do so is not well understood.

New work from a team of Carnegie cosmochemists published by Science

January 16, 2018

WASHINGTON, D.C. – US2020, a  nationwide network of more than 350 organizations to advance the STEM (Science, Technology, Engineering and Math) fields, chose the DC STEM Network as one of 15 finalists for the STEM Coalition Challenge.  Ninety-two partner networks, working to advance STEM mentoring and learning to underrepresented students, competed. The finalists will compete for $1-million in resources to implement their innovative approaches to STEM teaching and learning.  

The DC STEM Network is a collaboration between the Carnegie Science’s education arm, Carnegie Academy for Science Education (CASE) and the DC Office of the State Superintendent of Education (OSSE). The

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Stanford University
January 9, 2018

Washington, DC— Without eyes, ears, or a central nervous system, plants can perceive the direction of environmental cues and respond to ensure their survival.

For example, roots need to extend through the maze of nooks and crannies in the soil toward sources of water and nutrients. The various ways that plants guide this branching to take advantage of their environment is of great interest to scientists and of potential use by farmers in need of crops that produce more food with fewer resources.

Carnegie and Stanford University biologist José Dinneny has spent years studying how root growth responds to water, particularly through a phenomenon called hydropatterning, which

January 9, 2018

National Harbor, MD—How far away is that galaxy? 

Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out to be fiendishly difficult to answer. The best answer came more than 100 years ago from an astronomer who was mostly unrecognized in her time—and today, another astronomer has used Sloan Digital Sky Survey (SDSS) data to make those distance measurements more precise than ever. 

"It's been fascinating to work with such historically significant stars," says Kate Hartman, an undergraduate from Pomona College who announced the results at today’s American Astronomical Society (AAS) meeting in

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Julia Clarke, University of Texas
March 29, 2018

How do we go beyond the bones to bring dinosaurs to life? Dr. Clarke will explain the new toolkits she uses to  study what dinosaurs might have sounded or looked like when they roamed the Earth.

Dr. Julia Clarke: Wilson Professor of Vertebrate Paleontology & HHMI Professor, Jackson School of Geosciences, The University of Texas at Austin

#DinosaurBones

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Oregon State University, Joy Leighton
April 25, 2018

Can we use the ocean without using it up? The task is daunting given current trajectories in fisheries, plastics, and other pollutants, and the impacts of climate change and ocean acidification.  However, new scientific insights, tools, and partnerships are providing hope that it’s not too late to transition to more-sustainable practices and policies.  Dr. Lubchenco wuill draw on her four years as the Under Secretary of Commerce for Oceans and Atmosphere and the Administrator of the U.S. National Oceanic and Atmospheric Administration (NOAA), her two years as the first U.S. Science Envoy for the Ocean, and her decades of research around the world to summarize the importance to people of

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, University of Bristol
May 9, 2018

Looking upward, the vastness of the heavens are accessible through giant telescopes that collect light from the beginning of time. Turn a telescope downward and the opaqueness of our planet conceals the secrets of its origin and evolution. Diamonds, those translucent rarities, illuminate the depths of our planet and reveal connections between the deep earth and the surface of our planet through both time and space.

Dr. Michael Walter: Incoming Director, Carnegie Geophysical Laboratory

#DiamondScience

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, MIT
June 12, 2018

The direct measurement of gravitational waves predicted by Albert Einstein 100 years ago has open a new field of science – gravitational wave astrophysics and astronomy. The recent discoveries and the prospects for the new field will be presented.

Dr. Rainer Weiss: Emeritus Professor of Physics, MIT, on behalf of the LIGO Scientific Collaboration

#GravitationalWaves

Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood. 

The Lepper lab studies the mechanics of these processes. overturned previous research that identified critical genes for making muscle stem cells. It turns out that the genes that make muscle stem cells in the embryo are surprisingly not needed in adult muscle stem cells to regenerate muscles after injury. The finding challenges the current course of research into muscular dystrophy, muscle

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given the crucial role of the precursor cells to egg

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines,

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the pace and character of star birth, and how large galaxies form from earlier, smaller systems.

Dressler is also intricately involved in instrumentation. He led the effort for the Inamori Magellan Areal Spectrogrph (IMACS), a wide-field imager and multi-object spectrograph which became operational in 2003 on the Baade telescope at Carnegie’s Las Campanas Observatory. Spectrographs take light

Distant galaxies offer a glimpse of the universe as it was billions of years ago. Understanding how the Milky Way and other galaxies originated provides a unique perspective on the fundamental physics of cosmology, the invisible dark matter, and  repulsive force of dark energy. Patrick McCarthy uses the facilities at Carnegie’s Las Campanas Observatory to explore the early formation and evolution of galaxies. He is also director of the Giant Magellan Telescope Organization, an international consortium that is building the next generation giant telescope.  

Galaxy formation is driven by the interplay between the large-scale distribution of dark matter—that non-luminous unidentified