Carnegie announces retirement of president

The Board of Trustees of the Carnegie Institution for Science has announced that President Matthew P. Scott will retire at the end of this year. 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • We’ve all seen the photos. Long panel tables full of people from around the globe hashing out the intricacies of how to best fight climate change for endless grueling hours.

    But what’s it like to be in the room?

    Carnegie’s Geeta Persad is there and checking in with us regularly with an insider’s look at the 3rd Conference of the Parties to the United Nations Framework Convention on Climate Change—or COP 23 for short—in Bonn, Germany.

    Explore this Story

The Sloan Digital Sky Survey has been one of the most-successful and influential surveys in the history of astronomy, creating the most-detailed three-dimensional maps of the universe ever made. The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Carnegie’s Juna Kollmeier, will move forward with mapping the entire sky following a $16 million grant from the Alfred P. Sloan Foundation. The grant will kickstart a groundbreaking all-sky spectroscopic survey for a next wave of discovery, anticipated to start in 2020.

Explore this Story

Reservoirs of oxygen-rich iron between the Earth’s core and mantle could have played a major role in Earth’s history, including the breakup of supercontinents, drastic changes in Earth’s atmospheric makeup, and the creation of life, according to recent work from an international research team led by Carnegie's Ho-kwang "Dave" Mao. 

Explore this Story

It’s the celestial equivalent of a horror movie villain—a star that wouldn’t stay dead. An international team of astronomers including Carnegie’s Nick Konidaris and Benjamin Shappee discovered a star that exploded multiple times over a period of 50 years. The finding completely confounds existing knowledge of a star’s end of life, and Konidaris’ instrument-construction played a crucial role in analyzing the phenomenon. 

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

The Giant Magellan Telescope Organization (GMTO) announced that it has initiated the casting of the fifth of seven mirrors that will form the heart of the Giant Magellan Telescope (GMT). The mirror is being cast at the University of Arizona's Richard F. Caris Mirror Laboratory, the facility known for creating the world’s largest mirrors for astronomy. The 25-meter diameter GMT will be sited at Carnegie's Las Campanas Observatory in the Chilean Andes and will be used to study planets around other stars and to look back to the time when the first galaxies formed. The process of “casting” the giant mirror involves melting nearly 20 tons of glass in a spinning furnace. Once cooled, the glass disk will be polished to its final shape using state-of-the-art technology developed by the University of Arizona.

Explore this Story
The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission to orbit Mercury following three flybys of that planet is a scientific investigation of the planet Mercury. Understanding Mercury, and the forces that have shaped it is fundamental to understanding the terrestrial...
Explore this Project
Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of...
Explore this Project
The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs....
Explore this Project
Special Events
Monday, November 20, 2017 - 6:00pm to 9:00pm

It's July 1945. Germany is in defeat and the Manhattan Project’s atomic bombs are on their way to Japan. Under the direction of physicist Samuel Goudsmit, the Allies are holding some of the top...

Explore this Event
Special Events
Monday, December 4, 2017 - 6:30pm to 7:45pm

The great challenge of our time is to build and nurture sustainable communities, designed in such a manner that their ways of life, physical structures, and technologies do not interfere with...

Explore this Event
Capital Science Evening Lectures
Wednesday, December 13, 2017 - 6:30pm to 7:45pm

There are an estimated 150 million children living with disabilities worldwide. Thanks to recent advances in robotics, therapeutic intervention protocols using robots are now ideally positioned to...

Explore this Event
Dave Mao’s research centers on ultra-high pressure physics, chemistry, material sciences, geophysics, geochemistry and planetary sciences using diamond-anvil cell techniques that he has pioneered. He is also director of the Energy Frontier Research in Extreme Environments (EFree) center at the...
Meet this Scientist
Director Emeritus, George Preston has been deciphering the chemical evolution of stars in our Milky Way for a quarter of a century. He and Steve Shectman started this quest using a special technique to conduct a needle-in-the-haystack search for the few, first-generation stars, whose chemical...
Meet this Scientist
Wolf Frommer believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of...
Meet this Scientist

Explore Carnegie Science

November 17, 2017

________________

Tuesday, November 14, 2017: 

________________

Sunday, November 12, 2017:

________________

Thursday, November 9, 2017:

________________

Monday, November 6, 2017:

We’ve all seen the photos. Long panel tables full of people from around the globe hashing out the intricacies of how to best fight climate change for endless grueling hours.

But what’s it like to be in the room?

Carnegie’s Geeta Persad will be there and she’ll checking in with us periodically to offer an insider’s look at the 3rd Conference of the Parties to the United Nations Framework Convention on Climate

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Robin Dienel, SDSS-V, Sloan Digital Sky Survey
November 16, 2017

Pasadena, CA— The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Carnegie’s Juna Kollmeier, will move forward with mapping the entire sky following a $16 million grant from the Alfred P. Sloan Foundation. The grant will kickstart a groundbreaking all-sky spectroscopic survey for a next wave of discovery, anticipated to start in 2020.

The Sloan Digital Sky Survey has been one of the most-successful and influential surveys in the history of astronomy, creating the most-detailed three-dimensional maps of the universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects.

“For more

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, National Science Review
November 13, 2017

Washington, DC— Reservoirs of oxygen-rich iron between the Earth’s core and mantle could have played a major role in Earth’s history, including the breakup of supercontinents, drastic changes in Earth’s atmospheric makeup, and the creation of life, according to recent work from an international research team published in National Science Review.

The team—which includes scientists from Carnegie, Stanford University, the Center for High Pressure Science and Technology Advanced Research in China, and the University of Chicago—probed the chemistry of iron and water under the extreme temperatures and pressures of the Earth’s core-mantle boundary.

When the action of plate

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory, ESO/M. Kornmesser
November 8, 2017

Pasadena, CA— It’s the celestial equivalent of a horror movie villain—a star that wouldn’t stay dead.

An international team of astronomers including Carnegie’s Nick Konidaris and Benjamin Shappee discovered a star that exploded multiple times over a period of 50 years. The finding, published by Nature, completely confounds existing knowledge of a star’s end of life, and Konidaris’ instrument-construction played a crucial role in analyzing the phenomenon.  

In September 2014, the intermediate Palomar Transient Factory team of astronomers detected a new explosion in the sky, iPTF14hls.

The light given off by the event was analyzed in order to understand the speed and

November 20, 2017

It's July 1945. Germany is in defeat and the Manhattan Project’s atomic bombs are on their way to Japan. Under the direction of physicist Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists—among them Werner Heisenberg, Otto Hahn, and Walter Gerlach—captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombing of Hiroshima and Nagasaki? How will these famous scientists explain to themselves and to the world their failure to achieve

December 4, 2017

The great challenge of our time is to build and nurture sustainable communities, designed in such a manner that their ways of life, physical structures, and technologies do not interfere with nature's inherent ability to sustain life. To do so, requires a new ecological understanding of life, as well as a new kind of "systemic" thinking. In this lecture, Dr. Capra will show that such a new understanding of life in terms of complexity, networks, and patterns of organization, has recently emerged at the forefront of science. He will emphasize, in particular, the urgent need of of systemic thinking for dealing with our global ecological crisis and protecting the continuation andflourishing

December 13, 2017

There are an estimated 150 million children living with disabilities worldwide. Thanks to recent advances in robotics, therapeutic intervention protocols using robots are now ideally positioned to make an impact on this issue.  Dr. Howard will discuss the role of robotics and related technologies for therapy and highlight methods that bring us closer to the goal of integrating robots more fully into our lives.

Dr. Ayanna Howard, Professor, Linda J. and Mark C. Smith Endowed Chair, School of Electrical & Computer Engineering, Georgia Institute of Technology; Chief Technology Officer, Zyrobotics

#PediatricRobotics

The Capital Science Evenings are made possible with

January 16, 2018

Charles Darwin said evolution was too slow to be observed, but modern studies have corrected this assertion. The Grants will discuss their decades of work studying Darwin’s finches on the Galápagos Island of Daphne Major, as chronicled in the Pulitzer Prize-winning book The Beak of the Finch: A Story of Evolution in Our Time. Their research showed that Darwin’s finches evolve repeatedly when the environment changes. They have even observed the initial stages of new species formation!

Drs. Peter and Rosemary Grant, Professors emeriti, Princeton University

#DarwinsFinches

The Capital Science Evenings are made possible with support from Margaret & Will Hearst and

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Farber

The NASA Astrobiology Institute (NAI) Carnegie Team focuses on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich primitive planetary bodies, prebiotic molecular synthesis through catalyzing with minerals, and the connection between planetary evolution to the emergence, and sustenance of biology. This program attempts to integrate the sweeping narrative of life’s history through a combination of bottom-up and top-down studies. On the one hand, this team studies processes related to chemical and physical evolution in plausible prebiotic

Carnegie researchers are developing new scientific approaches that integrate phylogenetic, chemical and spectral remote sensing perspectives - called Spectranomics - to map canopy function and biological diversity throughout tropical forests of the world.

Mapping the composition and chemistry of species in tropical forests is critical to understanding forest functions related to human use and climate change. However, high-resolution mapping of tropical forest canopies is challenging because traditional field, airborne and satellite measurements cannot easily measure the canopy chemical or taxonomic variation among species over large regions. New technology, such as the Carnegie

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

Steven Farber

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Farber

Carnegie Science, Carnegie Institution for Science, Carnegie Institution

Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional to global scales.

Asner graduated with a bachelor’s degree in engineering from the University of Colorado, Boulder, in 1991. He earned master's and doctorate degrees in geography and biology, respectively, from the University of Colorado in 1997. He served as a postdoctoral fellow in the Department of Geological and Environmental Sciences at Stanford University until he joined the

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in repeating units. The structure responsible for

Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental crust.

  Most all of the chemical diversity in the universe comes from the nuclear reactions inside stars, in a process called nucleosynthesis. To answer his questions, Carlson developes novel procedures using instruments called mass spectrometers to make precise measurements of isotopes--atoms of an element with different numbers of neutrons--of Chromium (Cr), strontium (Sr), barium ( Ba