President Matthew Scott on Kristine McDivitt Tompkins' 2017 Carnegie Medal of Philanthropy

"Steadfast in her commitment, Ms. Tompkins, together with her husband, acquired and donated millions of acres of unspoiled new parklands to Chile and Argentina. This achievement rendered the couple the most successful park-oriented conservationists in history."

Explore this Story
Washington, DC—Rock samples from northeastern Canada retain chemical signals that help explain what Earth’s crust was like more than 4 billion years ago, reveals new work from Carnegie’s Richard Carlson and Jonathan O’Neil of the University of Ottawa. Their work is published by Science.   There is...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • For the third consecutive year, Carnegie Science is honoring our postdoctoral researchers during National Postdoc Appreciation Week September 18 - 22, 2017.  Our postdocs are crucial members of our research teams.  The successes of our postdocs, as they pursue their scientific careers after leaving Carnegie, is deeply important to the Institution and we are very proud of them.  Carnegie plant biologist Devaki Bhaya will be streaming a presentation about the history and opportunities for funding at the National Science Foundation on September 18, at 10:30 Pacific Time.

    Explore this Story
  • Youtube URL: 

    For more than four decades, Jacques-Yves Cousteau’s beloved research vessel, Calypso, explored the world’s oceans. And on Monday night, we explored his journey from inventor and diving enthusiast to dedicated conservationist as we screened the U.S. premiere of the film L’Odysseé at our DC headquarters.

    “He brought the marine world into homes across the globe—including my own—and helped people understand what made these ecosystems so special and worthy of protection,” said Carnegie President Matthew Scott at the start of the evening.

    Watch This Video

Carnegie staff scientist Greg Asner has been awarded the 22nd Heinz Award for the Environment,* “ for developing ultra-high-resolution imaging technology that provides unprecedented detail on the biodiversity and health of the world’s forests and coral reefs, and the impact of deforestation, land degradation and climate change.” The annual award comes with a cash award of $250,000.

Explore this Story

New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of the star’s seven known planets. If gas giant planets are found in this system’s outer edges, it could help scientists understand how our own Solar System’s gas giants like Jupiter and Saturn formed.

Explore this Story

The Amgen Foundation, in partnership with Carnegie Academy for Science Education (CASE),  announced that it brings the Amgen Biotech Experience (ABE) to local classrooms as part of a $10.5 million investment in the longstanding science education program.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

A team of Carnegie high-pressure physicists have created a form of carbon that’s hard as diamond, but amorphous, meaning it lacks the large-scale structural repetition of a diamond’s crystalline structure. Their findings are reported in Nature Communications.

Explore this Story
  • The amount of time it takes for an ecosystem to recover from a drought is an important measure of a drought’s severity. During the 20th century, the total area of land affected by drought increased, and longer recovery times became more common, according to new research published in Nature by a group of scientists including Carnegie’s Anna Michalak and Yuanyuan Fang.

    Explore this Story
The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass...
Explore this Project
Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation...
Explore this Project
Capital Science Evening Lectures
Thursday, September 28, 2017 - 6:30pm to 7:45pm

Membrane fusion is a universal process that allows cells to deploy tiny, enclosed, fluid-filled structures called vesicles to store and release packets of active substances.  This system allows...

Explore this Event
Capital Science Evening Lectures
Wednesday, October 25, 2017 - 6:30pm to 7:45pm

What does it mean to be a habitable planet? How can we find life if it’s truly “alien” and different from life on Earth? And what techniques can we use to search for life on worlds orbiting...

Explore this Event
Broad Branch Road Neighborhood Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Thursday, October 26, 2017 - 6:30pm to 7:45pm

We all live on a planet, and planets represent the best places to look for life elsewhere in the universe. This makes planets uniquely interesting objects, both for astronomers, and for everyone...

Explore this Event
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive...
Meet this Scientist
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist

Explore Carnegie Science

September 18, 2017

For the third consecutive year, Carnegie Science is honoring our postdoctoral researchers during National Postdoc Appreciation Week September 18 - 22, 2017.  Our postdocs are crucial members of our research teams.  The successes of our postdocs, as they pursue their scientific careers after leaving Carnegie, is deeply important to the Institution and we are very proud of them.  Carnegie plant biologist Devaki Bhaya will be streaming a presentation about the history and opportunities for funding at the National Science Foundation on September 18, at 10:30 Pacific Time.  The talk can be viewed at all Carnegie locations.  The talk will be followed by a lunch on the Global Ecology and Plant

Greg Asner Receives Heinz Award
September 14, 2017

Carnegie staff scientist Greg Asner has been awarded the 22nd Heinz Award for the Environment,* “ for developing ultra-high-resolution imaging technology that provides unprecedented detail on the biodiversity and health of the world’s forests and coral reefs, and the impact of deforestation, land degradation and climate change.” The annual award comes with a cash award of $250,000.

Asner was hired in 2001 as the Department of Global Ecology’s first staff scientist. Since coming to Carnegie, Asner has pioneered new methods for investigating tropical deforestation, degradation, ecosystem diversity, invasive species, carbon emissions, climate change, and much more using satellite and

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA/JPL-Caltech
September 5, 2017

Washington, DC— New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of the star’s seven known planets. If gas giant planets are found in this system’s outer edges, it could help scientists understand how our own Solar System’s gas giants like Jupiter and Saturn formed.

Earlier this year, NASA’s Spitzer Space Telescope thrilled the world as it revealed that TRAPPIST-1, an ultra-cool dwarf star in the Aquarius constellation, was the first-known system of seven Earth-sized planets orbiting a single star. Three of these planets are in the so-called habitable zone—

Carnegie Academy for Science Education students conduct hands-on research.
September 5, 2017

The Amgen Foundation, in partnership with Carnegie Academy for Science Education (CASE),  announced that it brings the Amgen Biotech Experience (ABE) to local classrooms as part of a $10.5 million investment in the longstanding science education program. Globally, ABE is expected to reach nearly 900,000 high school students by 2020 in 18 regions around the world. Building on program’s success, Amgen and Carnegie Academy for Science Education will engage D.C. high school students with proven hands-on science labs

For nearly 30 years, ABE has empowered high school science teachers to implement real-world biotechnology labs in their classrooms, helping their students better

September 28, 2017

Membrane fusion is a universal process that allows cells to deploy tiny, enclosed, fluid-filled structures called vesicles to store and release packets of active substances.  This system allows the organs in the body to use hormones to communicate with each other and for the brain to use neurotransmitters to send messages.  Similar vesicle packets distribute proteins within a cell, enabling the specialized organelles contained in each cell to function properly and to propagate in cell division.  Imbalances in these pathways contribute to diabetes and cancer, as well as immune and neurological diseases.

Dr. James E. Rothman, Nobel Laureate in Physiology or Medicine & Kavli

October 25, 2017

What does it mean to be a habitable planet? How can we find life if it’s truly “alien” and different from life on Earth? And what techniques can we use to search for life on worlds orbiting distant stars? Drs. Arney and Domagal-Goldman will discuss the science behind these questions and the future telescopes that may provide the answers.

Drs. Giada Arney and Shawn Domagal-Goldman, Astrobiologists, NASA Goddard Space Flight Center

#OtherEarths

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
October 26, 2017

We all live on a planet, and planets represent the best places to look for life elsewhere in the universe. This makes planets uniquely interesting objects, both for astronomers, and for everyone who is interested in our origins and our place in the cosmos. The Sun’s planets are a diverse bunch, with a wide variety of orbits, sizes, compositions, atmospheres, and climates. Newly discovered planets orbiting other stars are even more varied, and many of these planetary systems are very different than our own. How did this diversity arise? In this lecture, we will explore how planets form and why they look the way they do. We will see how scientists have pieced together the story so far, and

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
November 16, 2017

If you enjoyed this summer’s spectacular total solar eclipse, you have the Moon to thank for it! But Earth’s only natural satellite and closest cosmic neighbor does a lot more than occasionally block out the Sun in dramatic fashion. It controls ocean tides, gives us stable seasons and climates, and in 4 million years it will finally eliminate the need for February 29th! Eclipses may be the Moon’s most-theatrical display, but to a scientist the real treasure is what the Moon can tell us about Solar System history. Have you ever wondered what you’re looking at when you look at the Moon in the night sky? Is the Moon’s forever-hidden far side different? Does the Moon have the same types of

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young. None of the accepted paradigms explain why the magmatic and tectonic activity extend so far east of the North American plate margin. By applying numerous techniques ranging from geochemistry and petrology to active and passive seismic imaging to geodynamic modeling, the researchers examine an assemblage of new data that will provide key information about the roles of lithosphere structure,

Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new techniques to analyze different variants of the same atom—isotopes—in small samples. In related studies, he uses space-based X-ray and gamma-ray instrumentation to determine the composition of planetary surfaces. He was part of the 2000-2001 scientific team to hunt for meteorites in Antarctica.

Nittler is especially interested in presolar grains contained in meteorites and in what they can tell

Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to produce cells called spores. Each spore divides forming a single set of chromosomes (haploid) --the gametophyte--which produces the sperm and egg cells.

Evans studies how the haploid genome is required for normal egg and sperm function. In flowering plants, the female gametophyte, called the embryo sac, consists of four cell types: the egg cell, the central cell, and two types of supporting

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America's Climate

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research