President Matthew Scott on Kristine McDivitt Tompkins' 2017 Carnegie Medal of Philanthropy

"Steadfast in her commitment, Ms. Tompkins, together with her husband, acquired and donated millions of acres of unspoiled new parklands to Chile and Argentina. This achievement rendered the couple the most successful park-oriented conservationists in history."

Explore this Story
Washington, DC—Rock samples from northeastern Canada retain chemical signals that help explain what Earth’s crust was like more than 4 billion years ago, reveals new work from Carnegie’s Richard Carlson and Jonathan O’Neil of the University of Ottawa. Their work is published by Science.   There is...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • For the third consecutive year, Carnegie Science is honoring our postdoctoral researchers during National Postdoc Appreciation Week September 18 - 22, 2017.  Our postdocs are crucial members of our research teams.  The successes of our postdocs, as they pursue their scientific careers after leaving Carnegie, is deeply important to the Institution and we are very proud of them.  Carnegie plant biologist Devaki Bhaya will be streaming a presentation about the history and opportunities for funding at the National Science Foundation on September 18, at 10:30 Pacific Time.

    Explore this Story
  • Youtube URL: 

    For more than four decades, Jacques-Yves Cousteau’s beloved research vessel, Calypso, explored the world’s oceans. And on Monday night, we explored his journey from inventor and diving enthusiast to dedicated conservationist as we screened the U.S. premiere of the film L’Odysseé at our DC headquarters.

    “He brought the marine world into homes across the globe—including my own—and helped people understand what made these ecosystems so special and worthy of protection,” said Carnegie President Matthew Scott at the start of the evening.

    Watch This Video

Carnegie staff scientist Greg Asner has been awarded the 22nd Heinz Award for the Environment,* “ for developing ultra-high-resolution imaging technology that provides unprecedented detail on the biodiversity and health of the world’s forests and coral reefs, and the impact of deforestation, land degradation and climate change.” The annual award comes with a cash award of $250,000.

Explore this Story

New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of the star’s seven known planets. If gas giant planets are found in this system’s outer edges, it could help scientists understand how our own Solar System’s gas giants like Jupiter and Saturn formed.

Explore this Story

The Amgen Foundation, in partnership with Carnegie Academy for Science Education (CASE),  announced that it brings the Amgen Biotech Experience (ABE) to local classrooms as part of a $10.5 million investment in the longstanding science education program.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

A team of Carnegie high-pressure physicists have created a form of carbon that’s hard as diamond, but amorphous, meaning it lacks the large-scale structural repetition of a diamond’s crystalline structure. Their findings are reported in Nature Communications.

Explore this Story
  • The amount of time it takes for an ecosystem to recover from a drought is an important measure of a drought’s severity. During the 20th century, the total area of land affected by drought increased, and longer recovery times became more common, according to new research published in Nature by a group of scientists including Carnegie’s Anna Michalak and Yuanyuan Fang.

    Explore this Story
The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs....
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
Fifty years ago, Americans led the world in math and science, claiming some of the most important inventions and technological breakthroughs of the 20th century.  Today, American 15-year-olds rank 25th in math compared to their peers worldwide.  Math ƒor America DC strives to reclaim America’s...
Explore this Project
Capital Science Evening Lectures
Thursday, September 28, 2017 - 6:30pm to 7:45pm

Membrane fusion is a universal process that allows cells to deploy tiny, enclosed, fluid-filled structures called vesicles to store and release packets of active substances.  This system allows...

Explore this Event
Capital Science Evening Lectures
Wednesday, October 25, 2017 - 6:30pm to 7:45pm

What does it mean to be a habitable planet? How can we find life if it’s truly “alien” and different from life on Earth? And what techniques can we use to search for life on worlds orbiting...

Explore this Event
Broad Branch Road Neighborhood Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Thursday, October 26, 2017 - 6:30pm to 7:45pm

We all live on a planet, and planets represent the best places to look for life elsewhere in the universe. This makes planets uniquely interesting objects, both for astronomers, and for everyone...

Explore this Event
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies...
Meet this Scientist
The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing...
Meet this Scientist

Explore Carnegie Science

September 18, 2017

For the third consecutive year, Carnegie Science is honoring our postdoctoral researchers during National Postdoc Appreciation Week September 18 - 22, 2017.  Our postdocs are crucial members of our research teams.  The successes of our postdocs, as they pursue their scientific careers after leaving Carnegie, is deeply important to the Institution and we are very proud of them.  Carnegie plant biologist Devaki Bhaya will be streaming a presentation about the history and opportunities for funding at the National Science Foundation on September 18, at 10:30 Pacific Time.  The talk can be viewed at all Carnegie locations.  The talk will be followed by a lunch on the Global Ecology and Plant

Greg Asner Receives Heinz Award
September 14, 2017

Carnegie staff scientist Greg Asner has been awarded the 22nd Heinz Award for the Environment,* “ for developing ultra-high-resolution imaging technology that provides unprecedented detail on the biodiversity and health of the world’s forests and coral reefs, and the impact of deforestation, land degradation and climate change.” The annual award comes with a cash award of $250,000.

Asner was hired in 2001 as the Department of Global Ecology’s first staff scientist. Since coming to Carnegie, Asner has pioneered new methods for investigating tropical deforestation, degradation, ecosystem diversity, invasive species, carbon emissions, climate change, and much more using satellite and

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA/JPL-Caltech
September 5, 2017

Washington, DC— New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of the star’s seven known planets. If gas giant planets are found in this system’s outer edges, it could help scientists understand how our own Solar System’s gas giants like Jupiter and Saturn formed.

Earlier this year, NASA’s Spitzer Space Telescope thrilled the world as it revealed that TRAPPIST-1, an ultra-cool dwarf star in the Aquarius constellation, was the first-known system of seven Earth-sized planets orbiting a single star. Three of these planets are in the so-called habitable zone—

Carnegie Academy for Science Education students conduct hands-on research.
September 5, 2017

The Amgen Foundation, in partnership with Carnegie Academy for Science Education (CASE),  announced that it brings the Amgen Biotech Experience (ABE) to local classrooms as part of a $10.5 million investment in the longstanding science education program. Globally, ABE is expected to reach nearly 900,000 high school students by 2020 in 18 regions around the world. Building on program’s success, Amgen and Carnegie Academy for Science Education will engage D.C. high school students with proven hands-on science labs

For nearly 30 years, ABE has empowered high school science teachers to implement real-world biotechnology labs in their classrooms, helping their students better

September 28, 2017

Membrane fusion is a universal process that allows cells to deploy tiny, enclosed, fluid-filled structures called vesicles to store and release packets of active substances.  This system allows the organs in the body to use hormones to communicate with each other and for the brain to use neurotransmitters to send messages.  Similar vesicle packets distribute proteins within a cell, enabling the specialized organelles contained in each cell to function properly and to propagate in cell division.  Imbalances in these pathways contribute to diabetes and cancer, as well as immune and neurological diseases.

Dr. James E. Rothman, Nobel Laureate in Physiology or Medicine & Kavli

October 25, 2017

What does it mean to be a habitable planet? How can we find life if it’s truly “alien” and different from life on Earth? And what techniques can we use to search for life on worlds orbiting distant stars? Drs. Arney and Domagal-Goldman will discuss the science behind these questions and the future telescopes that may provide the answers.

Drs. Giada Arney and Shawn Domagal-Goldman, Astrobiologists, NASA Goddard Space Flight Center

#OtherEarths

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
October 26, 2017

We all live on a planet, and planets represent the best places to look for life elsewhere in the universe. This makes planets uniquely interesting objects, both for astronomers, and for everyone who is interested in our origins and our place in the cosmos. The Sun’s planets are a diverse bunch, with a wide variety of orbits, sizes, compositions, atmospheres, and climates. Newly discovered planets orbiting other stars are even more varied, and many of these planetary systems are very different than our own. How did this diversity arise? In this lecture, we will explore how planets form and why they look the way they do. We will see how scientists have pieced together the story so far, and

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
November 16, 2017

If you enjoyed this summer’s spectacular total solar eclipse, you have the Moon to thank for it! But Earth’s only natural satellite and closest cosmic neighbor does a lot more than occasionally block out the Sun in dramatic fashion. It controls ocean tides, gives us stable seasons and climates, and in 4 million years it will finally eliminate the need for February 29th! Eclipses may be the Moon’s most-theatrical display, but to a scientist the real treasure is what the Moon can tell us about Solar System history. Have you ever wondered what you’re looking at when you look at the Moon in the night sky? Is the Moon’s forever-hidden far side different? Does the Moon have the same types of

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and coordinate static, dynamic and theoretical results. The research objectives include making highly accurate measurements to understand the transitions of materials into different phases under the multimegabar pressure rang; determine the electronic and magnetic properties of solids and fluid to multimegabar pressures and elevated temperatures; to bridge the gap between static and dynamic

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to shed light

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical fingerprints of

Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes—atomic variants of elements with the same number of protons but different numbers of neutrons. Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or fingerprints, of the oxygen isotopes 16O, 17O, and 18O. Weathering, ground water, and direct deposition of atmospheric aerosols change the ratios of the isotopes in a rock revealing a lot about the past climate.

Douglas Rumble’s research is centered on these three stable isotopes of oxygen and the four stable isotopes of sulfur 32S , 33S , 34S, and 36S. In addition to revealing what