Dr. Eric Isaacs Begins as 11th President of the Carnegie Institution for Science

Dr. Eric D. Isaacs begins his tenure as the 11th president of the Carnegie Institution on July 2, 2018.  Isaacs joins Carnegie from the University of Chicago where he has been the Robert A. Millikan Distinguished Service Professor, Department of Physics and the James Franck Institute Executive Vice President for Research, Innovation and National Laboratories. 

 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

Although Ross 128 b is not Earth’s twin, and there is still much scientists don’t know about its potential geologic activity, a team including Carnegie Astronomy's Johanna Teske and led by Brazil's Observatório Nacional's Diogo Souto was able to strengthen the argument that it’s a temperate planet that could potentially have liquid water on its surface.

Explore this Story

New work from a team led by Carnegie's Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep inside the Earth and other planets.

Explore this Story

Carnegie’s Eduardo Bañados led a team that found a quasar with the brightest radio emission ever observed in the early universe, due to it spewing out a jet of extremely fast-moving material. Bañados’ discovery was followed up by Emmanuel Momjian of the National Radio Astronomy Observatory, which allowed the team to see with unprecedented detail the jet shooting out of a quasar that formed within the universe’s first billion years of existence. 

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Technological innovation and industry collaboration will be needed to overcome "difficult to decarbonize" sectors of the economy, most of which are expected to grow in coming years, including aviation, freight shipping, and the manufacture of steel and cement, according to an analysis in Science by leading climate experts including Carnegie's Ken Caldeira. 

Explore this Story
  • A tremendous amount of genetic material must be packed into the nucleus of every cell—a tiny compartment. One of the biggest challenges in biology is to understand how certain regions of this highly packaged DNA can be called upon, so that the genes encoded in them can be “turned on,” or expressed and used to manufacture RNA and proteins. New work from a team led by Carnegie's Yixian Zheng has shed light on this process and their findings have implications for certain age-related diseases and organ decay.

    Explore this Story
Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000...
Explore this Project
Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood.  The...
Explore this Project
The Carnegie Airborne Observatory (CAO), developed by GregAsner, is a fixed-wing aircraft that sweeps laser light across the vegetation canopy to image it in brilliant 3-D. The data can determine the location and size of each tree at a resolution of 3.5 feet (1.1 meter), a level of detail that is...
Explore this Project
Allan Spradling is a Howard Hughes Medical Institute Investigator and director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic...
Meet this Scientist
Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies. The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium,...
Meet this Scientist
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist

Explore Carnegie Science

An illustration showing how the orbits of the newly discovered moons (bold) fit into the known orbital groupings of the Jovian moons (not bold). The "oddball" with the proposed name Valetudo orbits in the prograde, but crosses the orbits of the planet's o
July 16, 2018

Washington, DC—Twelve new moons orbiting Jupiter have been found—11 “normal” outer moons, and one that they’re calling an “oddball.”  This brings Jupiter’s total number of known moons to a whopping 79—the most of any planet in our Solar System.

A team led by Carnegie’s Scott S. Sheppard first spotted the moons in the spring of 2017 while they were looking for very distant Solar System objects as part of the hunt for a possible massive planet far beyond Pluto.  

In 2014, this same team found the object with the most-distant known orbit in our Solar System and was the first to realize that an unknown massive planet at the fringes of our Solar System, far beyond Pluto, could

This artist’s impression shows the temperate planet Ross 128 b, with its red dwarf parent star in the background. It is provided courtesy of ESO/M. Kornmesser.
July 10, 2018

Pasadena, CA—Last autumn, the world was excited by the discovery of an exoplanet called Ross 128 b, which is just 11 light years away from Earth. New work from a team led by Diogo Souto of Brazil’s Observatório Nacional and including Carnegie’s Johanna Teske has for the first time determined detailed chemical abundances of the planet’s host star, Ross 128.

Understanding which elements are present in a star in what abundances can help researchers estimate the makeup of the exoplanets that orbit them, which can help predict how similar the planets are to the Earth.

“Until recently, it was difficult to obtain detailed chemical abundances for this kind of star,” said lead

Nitrogen is the dominant gas in Earth’s atmosphere, where it is most-commonly bonded with itself in diatomic N2 molecules. New work indicate that it becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep insi
July 9, 2018

Washington, DC—New work from a team led by Carnegie’s Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep inside the Earth and other planets. Their findings are published by Nature Communications.

Nitrogen is one of the most-common elements in the universe and is crucial to life on Earth. In living organisms, it is a key part of the makeup of both the nucleic acids that form genetic material and the amino acids that make up proteins. It comprises nearly 80 percent of the Earth’s atmosphere.

But what about how nitrogen behaves in the intense

An artist’s conception of a radio jet spewing out fast-moving material from the newly discovered quasar. Artwork by Robin Dienel, courtesy of Carnegie Institution for Science.
July 9, 2018

Pasadena, CA—Carnegie’s Eduardo Bañados led a team that found a quasar with the brightest radio emission ever observed in the early universe, due to it spewing out a jet of extremely fast-moving material.

Bañados’ discovery was followed up by Emmanuel Momjian of the National Radio Astronomy Observatory, which allowed the team to see with unprecedented detail the jet shooting out of a quasar that formed within the universe’s first billion years of existence. 

The findings, published in two papers in The Astrophysical Journal, will allow astronomers to better probe the universe’s youth during an important period of transition to its current state.

Quasars are comprised

No content in this section.

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to achieve broad, durable

The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission to orbit Mercury following three flybys of that planet is a scientific investigation of the planet Mercury. Understanding Mercury, and the forces that have shaped it is fundamental to understanding the terrestrial planets and their evolution. This is the first orbital mission around the innermost planet. It took years of planning and complex trajectory to reach Mercury. Carnegie scientists have led the way revealing results that have redefined what we thought we knew about Mercury and the other rocky planets. For more information see http://messenger.jhuapl.edu/

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two years,

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy distribution

Steven Farber

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Farber

Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new techniques to analyze different variants of the same atom—isotopes—in small samples. In related studies, he uses space-based X-ray and gamma-ray instrumentation to determine the composition of planetary surfaces. He was part of the 2000-2001 scientific team to hunt for meteorites in Antarctica.

Nittler is especially interested in presolar grains contained in meteorites and in what they can tell

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to shed light