Carnegie announces retirement of president

The Board of Trustees of the Carnegie Institution for Science has announced that President Matthew P. Scott will retire at the end of this year. 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • We’ve all seen the photos. Long panel tables full of people from around the globe hashing out the intricacies of how to best fight climate change for endless grueling hours.

    But what’s it like to be in the room?

    Carnegie’s Geeta Persad is there and checking in with us regularly with an insider’s look at the 3rd Conference of the Parties to the United Nations Framework Convention on Climate Change—or COP 23 for short—in Bonn, Germany.

    Explore this Story

The Sloan Digital Sky Survey has been one of the most-successful and influential surveys in the history of astronomy, creating the most-detailed three-dimensional maps of the universe ever made. The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Carnegie’s Juna Kollmeier, will move forward with mapping the entire sky following a $16 million grant from the Alfred P. Sloan Foundation. The grant will kickstart a groundbreaking all-sky spectroscopic survey for a next wave of discovery, anticipated to start in 2020.

Explore this Story

Reservoirs of oxygen-rich iron between the Earth’s core and mantle could have played a major role in Earth’s history, including the breakup of supercontinents, drastic changes in Earth’s atmospheric makeup, and the creation of life, according to recent work from an international research team led by Carnegie's Ho-kwang "Dave" Mao. 

Explore this Story

It’s the celestial equivalent of a horror movie villain—a star that wouldn’t stay dead. An international team of astronomers including Carnegie’s Nick Konidaris and Benjamin Shappee discovered a star that exploded multiple times over a period of 50 years. The finding completely confounds existing knowledge of a star’s end of life, and Konidaris’ instrument-construction played a crucial role in analyzing the phenomenon. 

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

The Giant Magellan Telescope Organization (GMTO) announced that it has initiated the casting of the fifth of seven mirrors that will form the heart of the Giant Magellan Telescope (GMT). The mirror is being cast at the University of Arizona's Richard F. Caris Mirror Laboratory, the facility known for creating the world’s largest mirrors for astronomy. The 25-meter diameter GMT will be sited at Carnegie's Las Campanas Observatory in the Chilean Andes and will be used to study planets around other stars and to look back to the time when the first galaxies formed. The process of “casting” the giant mirror involves melting nearly 20 tons of glass in a spinning furnace. Once cooled, the glass disk will be polished to its final shape using state-of-the-art technology developed by the University of Arizona.

Explore this Story
Together with Dr. Jamie Shuda, Steve Farber created a Science Outreach Program, Project BioEYES, that incorporates life science and laboratory education using zebrafish. The outreach program has two main components: educating teachers through hands-on training and tours of our zebrafish facility,...
Explore this Project
Fifty years ago, Americans led the world in math and science, claiming some of the most important inventions and technological breakthroughs of the 20th century.  Today, American 15-year-olds rank 25th in math compared to their peers worldwide.  Math ƒor America DC strives to reclaim America’s...
Explore this Project
The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech...
Explore this Project
Special Events
Monday, November 20, 2017 - 6:00pm to 9:00pm

It's July 1945. Germany is in defeat and the Manhattan Project’s atomic bombs are on their way to Japan. Under the direction of physicist Samuel Goudsmit, the Allies are holding some of the top...

Explore this Event
Special Events
Monday, December 4, 2017 - 6:30pm to 7:45pm

The great challenge of our time is to build and nurture sustainable communities, designed in such a manner that their ways of life, physical structures, and technologies do not interfere with...

Explore this Event
Capital Science Evening Lectures
Wednesday, December 13, 2017 - 6:30pm to 7:45pm

There are an estimated 150 million children living with disabilities worldwide. Thanks to recent advances in robotics, therapeutic intervention protocols using robots are now ideally positioned to...

Explore this Event
Gwen Rudie studies the chemical and physical properties of very distant, so-called  high-redshift galaxies and their surrounding circumgalactic medium. She is primarily an observational astronomer working on the analysis and interpretation of high-resolution spectroscopy of high-redshift Quasi...
Meet this Scientist
Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics of the area and shape of...
Meet this Scientist
Volcanologist Diana Roman is interested in the mechanics of how magma moves through the Earth’s crust, and in the structure, evolution, and dynamics of volcanic conduit systems. Her ultimate goal is to understand the likelihood and timing of volcanic eruptions. Most of Roman’s research focuses on...
Meet this Scientist

Explore Carnegie Science

November 17, 2017

________________

Tuesday, November 14, 2017: 

________________

Sunday, November 12, 2017:

________________

Thursday, November 9, 2017:

________________

Monday, November 6, 2017:

We’ve all seen the photos. Long panel tables full of people from around the globe hashing out the intricacies of how to best fight climate change for endless grueling hours.

But what’s it like to be in the room?

Carnegie’s Geeta Persad will be there and she’ll checking in with us periodically to offer an insider’s look at the 3rd Conference of the Parties to the United Nations Framework Convention on Climate

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Robin Dienel, SDSS-V, Sloan Digital Sky Survey
November 16, 2017

Pasadena, CA— The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Carnegie’s Juna Kollmeier, will move forward with mapping the entire sky following a $16 million grant from the Alfred P. Sloan Foundation. The grant will kickstart a groundbreaking all-sky spectroscopic survey for a next wave of discovery, anticipated to start in 2020.

The Sloan Digital Sky Survey has been one of the most-successful and influential surveys in the history of astronomy, creating the most-detailed three-dimensional maps of the universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects.

“For more

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, National Science Review
November 13, 2017

Washington, DC— Reservoirs of oxygen-rich iron between the Earth’s core and mantle could have played a major role in Earth’s history, including the breakup of supercontinents, drastic changes in Earth’s atmospheric makeup, and the creation of life, according to recent work from an international research team published in National Science Review.

The team—which includes scientists from Carnegie, Stanford University, the Center for High Pressure Science and Technology Advanced Research in China, and the University of Chicago—probed the chemistry of iron and water under the extreme temperatures and pressures of the Earth’s core-mantle boundary.

When the action of plate

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory, ESO/M. Kornmesser
November 8, 2017

Pasadena, CA— It’s the celestial equivalent of a horror movie villain—a star that wouldn’t stay dead.

An international team of astronomers including Carnegie’s Nick Konidaris and Benjamin Shappee discovered a star that exploded multiple times over a period of 50 years. The finding, published by Nature, completely confounds existing knowledge of a star’s end of life, and Konidaris’ instrument-construction played a crucial role in analyzing the phenomenon.  

In September 2014, the intermediate Palomar Transient Factory team of astronomers detected a new explosion in the sky, iPTF14hls.

The light given off by the event was analyzed in order to understand the speed and

November 20, 2017

It's July 1945. Germany is in defeat and the Manhattan Project’s atomic bombs are on their way to Japan. Under the direction of physicist Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists—among them Werner Heisenberg, Otto Hahn, and Walter Gerlach—captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombing of Hiroshima and Nagasaki? How will these famous scientists explain to themselves and to the world their failure to achieve

December 4, 2017

The great challenge of our time is to build and nurture sustainable communities, designed in such a manner that their ways of life, physical structures, and technologies do not interfere with nature's inherent ability to sustain life. To do so, requires a new ecological understanding of life, as well as a new kind of "systemic" thinking. In this lecture, Dr. Capra will show that such a new understanding of life in terms of complexity, networks, and patterns of organization, has recently emerged at the forefront of science. He will emphasize, in particular, the urgent need of of systemic thinking for dealing with our global ecological crisis and protecting the continuation andflourishing

December 13, 2017

There are an estimated 150 million children living with disabilities worldwide. Thanks to recent advances in robotics, therapeutic intervention protocols using robots are now ideally positioned to make an impact on this issue.  Dr. Howard will discuss the role of robotics and related technologies for therapy and highlight methods that bring us closer to the goal of integrating robots more fully into our lives.

Dr. Ayanna Howard, Professor, Linda J. and Mark C. Smith Endowed Chair, School of Electrical & Computer Engineering, Georgia Institute of Technology; Chief Technology Officer, Zyrobotics

#PediatricRobotics

The Capital Science Evenings are made possible with

January 16, 2018

Charles Darwin said evolution was too slow to be observed, but modern studies have corrected this assertion. The Grants will discuss their decades of work studying Darwin’s finches on the Galápagos Island of Daphne Major, as chronicled in the Pulitzer Prize-winning book The Beak of the Finch: A Story of Evolution in Our Time. Their research showed that Darwin’s finches evolve repeatedly when the environment changes. They have even observed the initial stages of new species formation!

Drs. Peter and Rosemary Grant, Professors emeriti, Princeton University

#DarwinsFinches

The Capital Science Evenings are made possible with support from Margaret & Will Hearst and

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/ccd/caps.

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH action, the Donald Brown lab studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis, from South Africa, because it is easy to rear. Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH. How can a simple molecule control so many different developmental changes? The hormone works by regulating the expression of groups of genes

Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our Solar System, which allow us to understand how the Solar System came to be.

The major planets in our Solar System travel around the Sun in fairly circular orbits and on similar planes. However, since the discovery of wildly varying planetary systems around other stars, and given our increased understanding about small, primordial bodies in our celestial neighborhood, the notion that our

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry.

Using the tiny zebrafish, Danio rerio, Halpern explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord. The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim

For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive team of researchers who investigate the basics of climate change. Field has authored more than 200 scientific publications and is cochair of the U. N.'s Intergovernmental Panel on Climate Change (IPCC) Working Group 2. The IPCC Fourth Assessment, for which Field was a coordinating author, was published in 2007. He was coeditor of the March 2012 IPCC Special Report on Managing the Risks of Extreme