Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the-art research in remote sensing into a simple, user-friendly yet powerful tool for non-profit institutions and governments in need of technologies for forest monitoring and environmental planning.
 

Scientific Area: 
Reference to Person: 

Explore Carnegie Science

June 28, 2018

Washington, DC—Carbon dioxide emissions from human activities must approach zero within several decades to avoid risking grave damage from the effects of climate change.  This will require creativity and innovation, because some types of industrial sources of atmospheric carbon lack affordable emissions-free substitutes, according to a new paper in Science from team of experts led by University of California Irvine’s Steven Davis and Carnegie’s Ken Caldeira.

In addition to heating, cooling, lighting, and powering individual vehicles—subjects that are often the focus of the emissions discussion—there are other major contributors to atmospheric carbon that are much more challenging

June 22, 2018

Washington, DC— Carnegie’s Greg Asner advanced through a venture capital-style pitch group challenge to win a $250,000 grant from Battery Powered that will enable his flying laboratory team to map the coral of the Hawaiian Islands.

“Mapping the health of Hawaii’s coral communities has been a long-term dream of mine going back to the early days of my scientific career,” Asner said. “This funding will finally allow me to do so comprehensively.”

Battery Powered is the member-led giving program of a private San Francisco social club called The Battery. Three times a year, the members select a different theme and hear pitches from experts and organizations who work on the front

June 4, 2018

Washington, DC—Carnegie scientist Greg Asner and his Reefscape Project play a crucial role in a new partnership that’s responding to the crisis facing the world’s coral reefs and the need for global maps and monitoring systems by harnessing satellite imagery and big data processing. Less than a quarter of the world’s reefs are sporadically mapped or monitored by visual assessment from SCUBA and light aircraft or, in a very few places, lower resolution satellite images.

The partnership will provide the first-ever seamless mosaic of high resolution satellite imagery of the world’s coral reefs and will engage with the global coral reef science and management communities to deliver

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Scubazoo
March 19, 2018

Sabah, Malaysia—Degraded forests play a crucial role in the future survival of Bornean elephants. A new study, published in the journal Biological Conservation, finds that forests of surprisingly short stature are ideal for elephants.

“Our study indicates that forests with a mean canopy height of 13 meters (about 43 feet) were those most utilized by Bornean elephants. These forests are consistent with degraded landscapes or those recovering from previous logging, or clearance,” noted lead author Luke Evans, a postdoctoral researcher at Carnegie and Danau Girang Field Centre. “The study utilized GPS tracking data from 29 individual elephants that were collared across Sabah,

No content in this section.

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

Ken

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be used to provide a direct

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that can be gleaned from mineral impurities preserved inside diamonds.

Walter had been at

Guoyin Shen's research interests lie in the quest to establish and to examine models for explaining and controlling the behavior of materials under extreme conditions. His research activities include investigation of phase transformations and melting lines in molecular solids, oxides and metals; polyamorphism in liquids and amorphous materials; new states of matter and their emergent properties under extreme conditions; and the development of enabling high-pressure synchrotron techniques for advancing compression science. 

He obtained a Ph.D. in mineral physics from Uppsala University, Sweden in 1994 and a B.S. in geochemistry from Zhejiang University, China in 1982. For more

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in Canada.