Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the-art research in remote sensing into a simple, user-friendly yet powerful tool for non-profit institutions and governments in need of technologies for forest monitoring and environmental planning.

Scientific Area: 
Reference to Person: 

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Scubazoo
March 19, 2018

Sabah, Malaysia—Degraded forests play a crucial role in the future survival of Bornean elephants. A new study, published in the journal Biological Conservation, finds that forests of surprisingly short stature are ideal for elephants.

“Our study indicates that forests with a mean canopy height of 13 meters (about 43 feet) were those most utilized by Bornean elephants. These forests are consistent with degraded landscapes or those recovering from previous logging, or clearance,” noted lead author Luke Evans, a postdoctoral researcher at Carnegie and Danau Girang Field Centre. “The study utilized GPS tracking data from 29 individual elephants that were collared across Sabah,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Aaron Takeo Ninokawa of UC Davis
March 14, 2018

Washington, DC— Ocean acidification will severely impair coral reef growth before the end of the century if carbon dioxide emissions continue unchecked, according to new research on Australia’s Great Barrier Reef led by Carnegie’s Ken Caldeira and the California Academy of Sciences’ Rebecca Albright.

Their work, published in Nature, represents the first ocean acidification experiment in which seawater was made artificially acidic by the addition of carbon dioxide and then allowed to flow across a natural coral reef community. The acidity of the seawater was increased to reflect end-of-century projections if carbon dioxide from greenhouse gas emissions are not abated.

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, public domain
February 26, 2018

Washington, DC—Wind and solar power could generate most but not all electricity in the United States, according to an analysis of 36 years of weather data by Carnegie’s Ken Caldeira, and three Carnegie-affiliated energy experts: Matthew Shaner, Steven Davis (of University of California Irvine), and Nathan Lewis (of Caltech). Their work is published by Energy & Environmental Science. 

Right now, about 38 percent of carbon dioxide emissions come from electricity production, which must be reduced to combat climate change.

The team found that as the amount of electricity produced by solar and wind increases, avoiding major blackouts becomes increasingly challenging.   

December 6, 2017

Washington, DC— The climate models that project greater amounts of warming this century are the ones that best align with observations of the current climate, according to a new paper from Carnegie’s Patrick Brown and Ken Caldeira published by Nature.  Their findings suggest that the models used by the Intergovernmental Panel on Climate Change, on average, may be underestimating future warming.

Climate model simulations are used to predict how much warming should be expected for any given increase in the atmospheric concentration of carbon dioxide and other greenhouse gases.

“There are dozens of prominent global climate models and they all project different amounts of

No content in this section.

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.


Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Guoyin Shen's research interests lie in the quest to establish and to examine models for explaining and controlling the behavior of materials under extreme conditions. His research activities include investigation of phase transformations and melting lines in molecular solids, oxides and metals; polyamorphism in liquids and amorphous materials; new states of matter and their emergent properties under extreme conditions; and the development of enabling high-pressure synchrotron techniques for advancing compression science. 

He obtained a Ph.D. in mineral physics from Uppsala University, Sweden in 1994 and a B.S. in geochemistry from Zhejiang University, China in 1982. For more

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in Canada.

Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy evolution. Blanc conducts a series of research projects on the properties of young and distant galaxies, the large-scale structure of the universe, the nature of Dark Energy—the mysterious repulsive force, the process of star formation at galactic scales, and the measurement of chemical abundances in galaxies.

To conduct this work, he takes a multi-wavelength approach including observations in the UV,

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.