Astronomy Stories
It isn’t often that our Capital Science Evening speaker hints at soon-to-be-breaking news right from the stage. Tuesday night, Pierre Cox, Director of the Atacama Large Milimiter/submillimeter...
Explore this Story
This cartoon courtesy of Anthony Piro illustrates three possibilities for the origin of the mysterious hydrogen emissions from the Type IA supernova called ASASSN-18tb that were observed by the Carnegie astronomers.
Pasadena, CA—Detection of a supernova with an unusual chemical signature by a team of astronomers led by Carnegie’s Juna Kollmeier—and including Carnegie’s Nidia Morrell...
Explore this Story
Over the past few years, Dr. Sheppard and his team have been performing the largest and deepest survey ever attempted of our Solar System’s fringes. In December 2018, he announced the most-...
Explore this Story
Earth's Moon, public domain image
Pasadena, CA— “Can moons have moons?” This simple question—asked by the four-year old son of Carnegie’s Juna...
Explore this Story
Pasadena, CA— Miguel Roth, director of Carnegie’s Las Campanas Observatory in Chile from 1990 to 2014 and the current representative of the Giant Magellan Telescope Organization (GMTO) in...
Explore this Story
An artist’s conception of a type Ia supernova exploding, courtesy of ESO.
Pasadena, CA—New work from the Carnegie Supernova Project provides the best-yet calibrations for using type Ia supernovae to measure cosmic distances, which has implications for our...
Explore this Story
Pan-STARRS image showing the host galaxy of the newly discovered supernova ASASSN-18bt
Pasadena, CA—A supernova discovered by an international group of astronomers including Carnegie’s Tom Holoien and...
Explore this Story
SDSS/Caltech/Keck
Pasadena, CA—Carnegie’s Anthony Piro was part of a Caltech-led team of astronomers who observed the peculiar death of a massive...
Explore this Story

Pages

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
John Mulchaey is the director and the Crawford H. Greenewalt Chair of the Carnegie Observatories. He investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also...
Meet this Scientist
Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the...
Meet this Scientist
You May Also Like...
Pasadena, CA- John Mulchaey has been appointed the new Crawford H. Greenewalt Director of the Carnegie Observatories. He is the eleventh director of the historic department, which was founded in 1904...
Explore this Story
Pasadena, CA— The Giant Magellan Telescope (GMT) has passed a major milestone as 11 international partners—including Carnegie—approved its construction, which secures the project’s future and unlocks...
Explore this Story
Pasadena, CA— Carnegie’s Allan Sandage, who died in 2010, was a tremendously influential figure in the field of astronomy. His final paper, published posthumously, focuses on unraveling a surprising...
Explore this Story

Explore Carnegie Science

This cartoon courtesy of Anthony Piro illustrates three possibilities for the origin of the mysterious hydrogen emissions from the Type IA supernova called ASASSN-18tb that were observed by the Carnegie astronomers.
May 7, 2019

Pasadena, CA—Detection of a supernova with an unusual chemical signature by a team of astronomers led by Carnegie’s Juna Kollmeier—and including Carnegie’s Nidia Morrell, Anthony Piro, Mark Phillips, and Josh Simon—may hold the key to solving the longstanding mystery that is the source of these violent explosions. Observations taken by the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile were crucial to detecting the emission of hydrogen that makes this supernova, called ASASSN-18tb, so distinctive.   

Their work is published in Monthly Notices of the Royal Astronomical Society.

Type Ia supernovae play a

Earth's Moon, public domain image
January 23, 2019

Pasadena, CA— “Can moons have moons?”

This simple question—asked by the four-year old son of Carnegie’s Juna Kollmeier—started it all.  Not long after this initial bedtime query,  Kollmeier was coordinating a program at the Kavli Institute for Theoretical Physics (KITP)  on the Milky Way while her one-time college classmate Sean Raymond of Université de Bordeaux was attending a parallel KITP program on the dynamics of Earth-like planets.   After discussing this very simple question at a seminar, the two joined forces to solve it.  Their findings are the basis of a paper published in Monthly Notices

December 14, 2018

Pasadena, CA— Miguel Roth, director of Carnegie’s Las Campanas Observatory in Chile from 1990 to 2014 and the current representative of the Giant Magellan Telescope Organization (GMTO) in Chile was awarded the Bernardo O’Higgins Order by the Chilean Foreign Affairs Ministry in Santiago today. The honor is in recognition “of his contribution to the development of astronomy in Chile, and for inspiring appreciation and knowledge of astronomy among students and people of all ages.”

The award is the highest civilian honor for non-Chileans. O’Higgins was one of the founders of the Chilean Republic. The award was established in 1965 to recognize

An artist’s conception of a type Ia supernova exploding, courtesy of ESO.
December 11, 2018

Pasadena, CA—New work from the Carnegie Supernova Project provides the best-yet calibrations for using type Ia supernovae to measure cosmic distances, which has implications for our understanding of how fast the universe is expanding and the role dark energy may play in driving this process. Led by Carnegie astronomer Chris Burns, the team’s findings are published in The Astrophysical Journal.  

Type Ia supernovae are fantastically bright stellar phenomena. They are violent explosions of a white dwarf—the crystalline remnant of a star that has exhausted its nuclear fuel—which is part of a binary system with another star.

In addition to being

No content in this section.

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas giant and ice giant protoplanets. His observational works centers on the Carnegie Astrometric Planet Search project, which has been underway for the last decade at Carnegie's Las Campanas Observatory in Chile.

While fragmentation is universally recognized as the dominant formation mechanism for binary and multiple stars, there are still major questions. The most important of these

We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.

 Astronomers have a basic understanding of this chemical enrichment cycle, but chemical evolution and nulceosynthesis are still not fully understood. Andrew McWilliam measures the detailed chemical composition of Red Giant stars, which are about as old as the galaxy and retain their original chemical composition.  He is seeking answer to questions such as: What are the sites of nucleosynthesis? What

Distant galaxies offer a glimpse of the universe as it was billions of years ago. Understanding how the Milky Way and other galaxies originated provides a unique perspective on the fundamental physics of cosmology, the invisible dark matter, and  repulsive force of dark energy. Patrick McCarthy uses the facilities at Carnegie’s Las Campanas Observatory to explore the early formation and evolution of galaxies. He is also director of the Giant Magellan Telescope Organization, an international consortium that is building the next generation giant telescope.  

Galaxy formation is driven by the interplay between the large-scale distribution of dark matter—that non

Director Emeritus, George Preston has been deciphering the chemical evolution of stars in our Milky Way for a quarter of a century. He and Steve Shectman started this quest using a special technique to conduct a needle-in-the-haystack search for the few, first-generation stars, whose chemical compositions sketch the history of element formation in the galaxy. These earliest stars are very rare and they are characteristically low in heavy metals because of their age. They were made of Big Bang material, mostly hydrogen and helium. It was only later that heavier elements were formed in the nuclear furnaces of newer stars.

 In their first study, Preston and Shectman compiled a