Astronomy Stories
It isn’t often that our Capital Science Evening speaker hints at soon-to-be-breaking news right from the stage. Tuesday night, Pierre Cox, Director of the Atacama Large Milimiter/submillimeter...
Explore this Story
A giant star being slowly devoured by a black hole courtesy of NASA Goddard.
Pasadena, CA—In a case of cosmic mistaken identity, an international team of astronomers revealed that what they once thought was a supernova is actually periodic flaring from a galaxy where a...
Explore this Story
An artist’s conception of GN-z11 courtesy of Jingchuan Yu.
Pasadena, CA— New work from an international team of astronomers including Carnegie’s Gregory Walth improves our understanding of the most-distant known astrophysical object— GN-z11...
Explore this Story
The Blue Ring Nebula courtesy of Mark Seibert
Pasadena, CA— The mysterious Blue Ring Nebula has puzzled astronomers since it was discovered in 2004. New work published in Nature...
Explore this Story
Carnegie theoretical astrophysicist Anthony Piro engages with the VizLab wall.
Pasadena, CA— In a refurbished Southern California garage, Carnegie astrophysicists are creating the virtual reality-enabled scientific workspace of the future where they will unlock...
Explore this Story
unWISE / NASA/JPL-Caltech / D.Lang (Perimeter Institute).
Pasadena, CA- La quinta generación del Sloan Digital Sky Survey recogió sus primeras observaciones del cosmos a la 1:47 a.m. del 24 de octubre de 2020. Este innovador estudio del cielo...
Explore this Story
unWISE / NASA/JPL-Caltech / D.Lang (Perimeter Institute).
Pasadena, CA— The Sloan Digital Sky Survey’s fifth generation collected its very first observations of the cosmos at 1:47 a.m. MDT on October 24, 2020. This groundbreaking all-sky survey...
Explore this Story
 "Blue Snowball" planetary nebula, courtesy of Eric Hsiao.
Pasadena, CA—An unusual stellar explosion is shining new light on the origins of a specific subgroup of Type Ia supernovae. Called LSQ14fmg, the exploding star exhibits certain characteristics...
Explore this Story

Pages

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is...
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017. Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He...
Meet this Scientist
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
Galacticus is not a super hero; it’s a super model used to determine the formation and evolution of the galaxies. Developed by Andrew Benson, the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, it is one of the most advanced models of galaxy formation available. Rather...
Meet this Scientist
You May Also Like...
Pasadena, CA— The Astronomical Society of the Pacific (ASP) has announced that the Carnegie Observatories’ postdoctoral associate Rachael Beaton will receive the 2016 Robert J. Trumpler Award. In...
Explore this Story
Carnegie astronomer and Vice President of the Giant Magellan Telescope (GMT), Patrick McCarthy, has been appointed as the first Director of the National Science Foundation’s newly formed...
Explore this Story
"The Moon needs no introduction ... To the layman, not versed in astrophysics, the Moon is the most-conspicuous object in the night sky and the rival of all heavenly objects, even including the Sun...
Explore this Story

Explore Carnegie Science

A giant star being slowly devoured by a black hole courtesy of NASA Goddard.
January 12, 2021

Pasadena, CA—In a case of cosmic mistaken identity, an international team of astronomers revealed that what they once thought was a supernova is actually periodic flaring from a galaxy where a supermassive black hole gives off bursts of energy every 114 days as it tears off chunks of an orbiting star.

Six years after its initial discovery—reported in The Astronomer’s Telegram by Carnegie’s Thomas Holoien—the researchers, led by Anna Payne of University of Hawai’i at Mānoa, can now say that the phenomenon they observed, called ASASSN-14ko, is a periodically recurring flare from the center of a galaxy more than 570 million light-years away in the

An artist’s conception of GN-z11 courtesy of Jingchuan Yu.
December 14, 2020

Pasadena, CA— New work from an international team of astronomers including Carnegie’s Gregory Walth improves our understanding of the most-distant known astrophysical object— GN-z11, a galaxy 13.4 billion light-years from Earth.

Formed 400 million years after the Big Bang, GN-z11 was previously determined by space telescope data to be the most-distant object yet discovered. In two newly published Nature Astronomy papers, a team led by Linhua Jiang at the Kavli Institute for Astronomy and Astrophysics at Peking University took near-infrared spectra using ground-based telescopes that confirmed the galaxy’s distance. They also caught an ultraviolet flash

The Blue Ring Nebula courtesy of Mark Seibert
November 18, 2020

Pasadena, CA— The mysterious Blue Ring Nebula has puzzled astronomers since it was discovered in 2004. New work published in Nature by a Caltech-led team including Carnegie astrophysicists Mark Seibert and Andrew McWilliam revealed that the phenomenon is the extremely difficult-to-spot result of a stellar collision in which two stars merged into one.

Sixteen years ago, NASA’s Galaxy Evolution Explorer (GALEX) spacecraft discovered a large, faint blob of gas with a star at its center—an object unlike anything previously seen in our Milky Way galaxy. The blob is represented as blue in the ultraviolet images of GALEX—although it doesn't actually emit

Carnegie theoretical astrophysicist Anthony Piro engages with the VizLab wall.
November 18, 2020

Pasadena, CA— In a refurbished Southern California garage, Carnegie astrophysicists are creating the virtual reality-enabled scientific workspace of the future where they will unlock the mysteries of the cosmos.

Imagine standing in front of a wave of data and probing the mysteries of the universe’s most-ancient galaxies side-by-side with swirling, colorful simulations of galaxy formation—seeing what aligns with expectations and what needs further interrogation.  A portal to fake universes may sound like science fiction, but it is now a reality at the Carnegie Observatories. 

The campus has just undertaken its new experiential

No content in this section.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the pace and character of star birth, and how large galaxies form from earlier, smaller systems.

Dressler is also intricately involved in instrumentation. He led the effort for the Inamori Magellan Areal Spectrogrph (IMACS), a wide-field imager and multi-object spectrograph which became operational in 2003 on the Baade telescope at Carnegie’s Las Campanas Observatory. Spectrographs

Staff member emeritus François Schweizer studies galaxy assembly and evolution by observing nearby galaxies, particularly how collisions and mergers affect their properties. His research has added to the awareness that these events are dominant processes in shaping galaxies and determining their stellar and gaseous contents.

When nearby galaxies collide and merge they yield valuable clues about processes that occurred much more frequently in the younger, distant universe. When two gas-rich galaxies collide, their pervasive interstellar gas gets compressed, clumps into dense clouds, and fuels the sudden birth of billions of new stars and thousands of star clusters.

The earliest galaxies are those that are most distant. Staff associate Dan Kelson is interested in how these ancient relics evolved. The latest generation of telescopes and advanced spectrographs—instruments that analyze light to determine properties of celestial objects—allow astronomers to accurately measure enormous numbers of distant galaxies. Kelson uses the Magellan 6.5-meter telescopes and high-resolution imaging from the Hubble Space Telescope to study distant galaxies.His observations of their masses, sizes and morphologies allow him to directly measure their stars' aging to infer their formation history. Kelson is the principal investigator of the Carnegie-

Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile, and the first of two cameras for the Magellan Baade telescope. Magellan consortium astronomers use the Baade camera for various IR-imaging projects, while his group focuses on distant galaxies and supernovae.

Until recently, it was difficult to find large numbers of galaxies at near-IR wavelengths. But significant advances in the size of IR detector arrays have allowed the Persson group