Astronomy Stories
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, M. Kornmesser
Pasadena, CA— Quasars are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They shine so brightly that they are often referred to as beacons and are among the...
Explore this Story
Washington, DC— Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe. While many dwarf galaxies...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Texas A&M,
Pasadena, CA—An international team of astronomers, including Carnegie’s Eric Persson, has charted the rise and fall of galaxies over 90 percent of cosmic history. Their work, which includes some of...
Explore this Story
Johanna Teske was awarded the third Postdoctoral Innovation and Excellence (PIE) Award, which is made through nominations from the department directors and chosen by the Office of the President. She...
Explore this Story
UGC1382
Carnegie’s Mark Seibert, Barry Madore, Jeff Rich, and team have discovered that what was believed since the 1960s to be a relatively boring, small elliptical galaxy dubbed UGC 1382 is really a...
Explore this Story
Pasadena, CA—Astronomers have believed since the 1960s that a galaxy dubbed UGC 1382 was a relatively boring, small elliptical galaxy. Ellipticals are the most common type of galaxy and lack the...
Explore this Story
Pasadena, CA— The Astronomical Society of the Pacific (ASP) has announced that the Carnegie Observatories’ postdoctoral associate Rachael Beaton will receive the 2016 Robert J. Trumpler Award. In...
Explore this Story
Washington, DC— Brown dwarfs are sometimes called failed stars. They’re stars’ dim, low-mass siblings and they fade in brightness over time. They’re fascinating to astronomers for a variety of...
Explore this Story

Pages

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting...
Explore this Project
The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get...
Explore this Project
The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in...
Explore this Project
The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating about in...
Meet this Scientist
 Barry Madore is widely known for his work on Cepheid variables—very bright pulsating stars used to determine distances in the universe—plus his research on peculiar galaxies, and the extragalactic distance scale. He divides his time between directing science for NED, the NASA/IPAC Extragalactic...
Meet this Scientist
Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our...
Meet this Scientist
You May Also Like...
In 2015, a star called KIC 8462852 caused quite a stir in and beyond the astronomy community due to a series of rapid, unexplained dimming events seen while it was being monitored by NASA’s Kepler...
Explore this Story
Slate's Bad Astronomy says a photo of Orion's M43 nebula by Carnegie's Yuri Beletsky and Igor Chilingarian of the Harvard–Smithsonian Center for Astrophysics might be the deep-sky astrophoto of the...
Explore this Story
AudioPasadena, CA— The structures and star populations of massive galaxies appear to change as they age, but much about how these galaxies formed and evolved remains mysterious. Many of the oldest...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Robin Dienel, SDSS-V, Sloan Digital Sky Survey
November 16, 2017

Pasadena, CA— The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Carnegie’s Juna Kollmeier, will move forward with mapping the entire sky following a $16 million grant from the Alfred P. Sloan Foundation. The grant will kickstart a groundbreaking all-sky spectroscopic survey for a next wave of discovery, anticipated to start in 2020.

The Sloan Digital Sky Survey has been one of the most-successful and influential surveys in the history of astronomy, creating the most-detailed three-dimensional maps of the universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects.

“For more

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory, ESO/M. Kornmesser
November 8, 2017

Pasadena, CA— It’s the celestial equivalent of a horror movie villain—a star that wouldn’t stay dead.

An international team of astronomers including Carnegie’s Nick Konidaris and Benjamin Shappee discovered a star that exploded multiple times over a period of 50 years. The finding, published by Nature, completely confounds existing knowledge of a star’s end of life, and Konidaris’ instrument-construction played a crucial role in analyzing the phenomenon.  

In September 2014, the intermediate Palomar Transient Factory team of astronomers detected a new explosion in the sky, iPTF14hls.

The light given off by the event was analyzed in order to understand the speed and

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Giant Magellan Telescope Organization, GMTO
November 3, 2017

Pasadena, CA—The Giant Magellan Telescope Organization (GMTO) today announced that it has initiated the casting of the fifth of seven mirrors that will form the heart of the Giant Magellan Telescope (GMT). The mirror is being cast at the University of Arizona's Richard F. Caris Mirror Laboratory, the facility known for creating the world’s largest mirrors for astronomy. The 25-meter diameter GMT will be sited at Carnegie's Las Campanas Observatory in the Chilean Andes and will be used to study planets around other stars and to look back to the time when the first galaxies formed. The process of “casting” the giant mirror involves melting nearly 20 tons of glass in a spinning furnace.

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
October 14, 2017

Washington, DC— On August 17, a team of four Carnegie astronomers provided the first-ever glimpse of two neutron stars colliding, opening the door to a new era of astronomy.  

Along with colleagues at UC Santa Cruz, the team used the Swope telescope at Las Campanas Observatory to discover the light produced by the merger, pinpointing the origin of a gravitational wave signal less than 11 hours after it was detected.  They also obtained the earliest spectra of the collision, which may allow them to explain how many of the universe’s heavy elements were created—a decades old question for astrophysicists.

Their discovery, named Swope Supernova Survey 2017a (or SSS17a), is

No content in this section.

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/ccd/caps.

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT will

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-

 Barry Madore is widely known for his work on Cepheid variables—very bright pulsating stars used to determine distances in the universe—plus his research on peculiar galaxies, and the extragalactic distance scale. He divides his time between directing science for NED, the NASA/IPAC Extragalactic Database, and research at Carnegie. His Carnegie work is to resolve discrepancies between observations of galaxies at different wavelengths, with what is happening during galactic evolution.

 Distant and older galaxies appear to be more ragged and disorganized than closer, younger ones. These appearances could be legitimate features, or the effects from the expansion of the universe, which

Gwen Rudie studies the chemical and physical properties of very distant, so-called  high-redshift galaxies and their surrounding circumgalactic medium. She is primarily an observational astronomer working on the analysis and interpretation of high-resolution spectroscopy of high-redshift Quasi Stellar Objects and low to medium-resolution near-infrared and optical spectroscopy of high-redshift galaxies. She is interested in understanding the intergalactic medium as a tool for understanding galaxy evolution and the physical properties of very distant galaxies such as the composition of stars and their star formation rates

Rudie received her AB from Dartmouth College and her Ph D

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive types of