Astronomy Stories
Pasadena, CA— Astronomer and instrumentation expert Stephen Shectman of the Carnegie Observatories has been selected to receive the Maria and Eric Muhlmann Award from the Astronomical Society of the...
Explore this Story
Ben Shappee, Hubble, Carnegie-Princeton Fellow, summarizes results for the Shappee et al. paper, "The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-Time Observations, First-Light...
Explore this Story
Slate's Bad Astronomy says a photo of Orion's M43 nebula by Carnegie's Yuri Beletsky and Igor Chilingarian of the Harvard–Smithsonian Center for Astrophysics might be the deep-sky astrophoto of the...
Explore this Story
With the New Horizons historic flyby of Pluto next week, imagine how excited we were a few weeks ago to unearth a set of plates from 1925 in our vault that include Pluto--five years before Pluto was...
Explore this Story
Dr. John Mulchaey Staff Scientist Carnegie Observatories The light we see with our eyes only tells a small part of the Universe's story. To get a complete picture of how the Universe works,...
Explore this Story
Pasadena, CA— The Giant Magellan Telescope (GMT) has passed a major milestone as 11 international partners—including Carnegie—approved its construction, which secures the project’s future and unlocks...
Explore this Story
Pasadena, CA— Type Ia supernovae are violent stellar explosions that shine as some of the brightest objects in the universe. But there are still many mysteries surrounding their origin—what kind of...
Explore this Story


The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs....
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center...
Explore this Project
The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get...
Explore this Project
Distant galaxies offer a glimpse of the universe as it was billions of years ago. Understanding how the Milky Way and other galaxies originated provides a unique perspective on the fundamental physics of cosmology, the invisible dark matter, and  repulsive force of dark energy. Patrick McCarthy...
Meet this Scientist
Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas...
Meet this Scientist
Globular clusters are spherical systems of some 100,000  gravitationally bound stars. They are among the oldest components of our galaxy and are key to understanding the age and scale of the universe. Previous measurements of their distances have compared the characteristics of different types of...
Meet this Scientist
You May Also Like...
Leading scientists, senior officials, and supporters from an international consortium of universities and research institutions are gathering on a remote mountaintop high in the Chilean Andes today...
Explore this Story
Pasadena, CA—Type Ia supernovae are important stellar phenomena, used to measure the expansion of the universe. But astronomers know embarrassingly little about the stars they come from and how the...
Explore this Story
Pasadena, CA— Astronomer and instrumentation expert Stephen Shectman of the Carnegie Observatories has been selected to receive the Maria and Eric Muhlmann Award from the Astronomical Society of the...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ASAS-SN
July 28, 2017

Pasadena, CA— Carnegie’s Benjamin Shappee is part of a team of scientists, including an Australian amateur astronomer, which discovered a new comet last week.

Called the All Sky Automated Survey for Supernovae (ASAS-SN), the international collaboration, which is headquartered at the Ohio State University, uses a network of eight 14-centimeter telescopes around the world to scan the visible sky every two or three nights looking for very bright supernovae.

But this time out they found something else—a comet. 

Jose Prieto, a former Carnegie postdoc now a professor at Universidad Diego Portales in Chile, was the first ASAS-SN team member to notice the bright, moving

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 20, 2017

"The Moon needs no introduction ... To the layman, not versed in astrophysics, the Moon is the most-conspicuous object in the night sky and the rival of all heavenly objects, even including the Sun itself" wrote Carnegie's F.E. Wright in a poetic 1935 paper about the challenges of studying the lunar surface, which was written when the idea of sending humans there was beyond the imagination.

Reporting on the work of a Committee on Study of the Surface Features of the Moon, Wright laid out the challenges of approaching lunar research using the standard techniques employed by geologists of the time—food for thought on the anniversary of the 1969 Moon landing.  

"The observer

Carnegie Science, Carnegie Institution for Science, Carnegie Institution, Max Planck Institute for Astronomy
May 24, 2017

Pasadena, CA— A team of astronomers including Carnegie’s Eduardo Bañados and led by Roberto Decarli of the Max Planck Institute for Astronomy has discovered a new kind of galaxy which, although extremely old—formed less than a billion years after the Big Bang—creates stars more than a hundred times faster than our own Milky Way.

Their findings are published by Nature.

The team’s discovery could help solve a cosmic puzzle—a mysterious population of surprisingly massive galaxies from when the universe was only about 10 percent of its current age.

After first observing these galaxies a few years ago, astronomers proposed that they must have been created from hyper-

May 17, 2017

Former Carnegie fellow and current trustee, astronomer Sandra Faber, has been awarded the 2017 Gruber Foundation Cosmology Prize. She was awarded the lifetime achievement award for “her groundbreaking studies of the structure, dynamics, and evolution of galaxies.” Her work provided the impetus to study dark matter, the invisible material that makes up most of the mass of the universe, in addition to  “ the recognition that black holes reside at the heart of most large galaxies."

Faber also has a long history of contributing to  innovative telescope technology, and she has “aided and inspired the work of astronomers and cosmologists worldwide.”

The prize will be awarded this

No content in this section.

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains controversial because of

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT will

We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.

 Astronomers have a basic understanding of this chemical enrichment cycle, but chemical evolution and nulceosynthesis are still not fully understood. Andrew McWilliam measures the detailed chemical composition of Red Giant stars, which are about as old as the galaxy and retain their original chemical composition.  He is seeking answer to questions such as: What are the sites of nucleosynthesis? What modulates element

Staff member emeritus François Schweizer studies galaxy assembly and evolution by observing nearby galaxies, particularly how collisions and mergers affect their properties. His research has added to the awareness that these events are dominant processes in shaping galaxies and determining their stellar and gaseous contents.

When nearby galaxies collide and merge they yield valuable clues about processes that occurred much more frequently in the younger, distant universe. When two gas-rich galaxies collide, their pervasive interstellar gas gets compressed, clumps into dense clouds, and fuels the sudden birth of billions of new stars and thousands of star clusters.

Some of

Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the pace and character of star birth, and how large galaxies form from earlier, smaller systems.

Dressler is also intricately involved in instrumentation. He led the effort for the Inamori Magellan Areal Spectrogrph (IMACS), a wide-field imager and multi-object spectrograph which became operational in 2003 on the Baade telescope at Carnegie’s Las Campanas Observatory. Spectrographs take light

The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating about in intergalactic space, largely in the form of ionized hydrogen gas.

 Michael Rauch is interested in all aspects of the intergalactic medium. He uses large telescopes, like the Magellans, to take spectra—light that reveals the chemical makeup of distant objects— of background quasars, which are highly energetic and extremely remote. He is looking for evidence of gas clouds located between the