Astronomy Stories
Pasadena, CA – The Giant Magellan Telescope Organization (GMTO) today announced the appointment of Walter E. Massey, PhD, and Taft Armandroff, PhD, to the positions of Board Chair and Vice...
Explore this Story
Pasadena, CA— A star known by the unassuming name of KIC 8462852 in the constellation Cygnus has been raising eyebrows both in and outside of the scientific community for the past year. In 2015...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, M. Kornmesser
Pasadena, CA— Quasars are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They shine so brightly that they are often referred to as beacons and are among...
Explore this Story
Washington, DC— Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe. While many dwarf...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Texas A&M,
Pasadena, CA—An international team of astronomers, including Carnegie’s Eric Persson, has charted the rise and fall of galaxies over 90 percent of cosmic history. Their work, which...
Explore this Story
Johanna Teske was awarded the third Postdoctoral Innovation and Excellence (PIE) Award, which is made through nominations from the department directors and chosen by the Office of the President. She...
Explore this Story
Carnegie’s Mark Seibert, Barry Madore, Jeff Rich, and team have discovered that what was believed since the 1960s to be a relatively boring, small elliptical galaxy ...
Explore this Story
Pasadena, CA—Astronomers have believed since the 1960s that a galaxy dubbed UGC 1382 was a relatively boring, small elliptical galaxy. Ellipticals are the most common type of galaxy and lack...
Explore this Story


The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
Juna Kollmeier’s research is an unusual combination—she is as observationally-oriented theorist making predictions that can be compared to current and future observations. Her primary focus is on the emergence of structure in the universe. She combines cosmological hydrodynamic...
Meet this Scientist
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas...
Meet this Scientist
You May Also Like...
Pasadena, CA— Carnegie’s Allan Sandage, who died in 2010, was a tremendously influential figure in the field of astronomy. His final paper, published posthumously, focuses on unraveling a surprising...
Explore this Story
Pasadena, CA— A team of astronomers including Carnegie’s Eduardo Bañados and led by Roberto Decarli of the Max Planck Institute for Astronomy has discovered a new kind of galaxy which, although...
Explore this Story
The House approved yesterday a bill to name the Large Synoptic Survey Telescope in honor of late Carnegie scientist Vera Rubin, who confirmed the existence of dark matter.
Explore this Story

Explore Carnegie Science

Illustration by James Josephides, courtesy of Swinburne Astronomy Productions.
November 12, 2019

Pasadena, CA—A star traveling at ultrafast speeds after being ejected by the supermassive black hole at the heart of our galaxy was spotted by an international team of astronomers including Carnegie’s Ting Li and Alex Ji. Their work is published by Monthly Notices of the Royal Astronomical Society. Hurtling at the blistering speed of 6 million kilometers per hour, the star is moving so fast that it will leave the Milky Way and head into intergalactic space.

Called S5-HVS1, the star was discovered in the Grus, or Crane, constellation by lead author Sergey Koposov of Carnegie Mellon University as part of the Southern Stellar Stream Spectroscopic Survey led by Carnegie

Ancient gas cloud courtesy of the Max Planck Society.
November 8, 2019

Washington, DC— The discovery of a 13 billion-year-old cosmic cloud of gas enabled a team of Carnegie astronomers to perform the earliest-ever measurement of how the universe was enriched with a diversity of chemical elements.  Their findings reveal that the first generation of stars formed more quickly than previously thought. The research, led by recent Carnegie-Princeton fellow Eduardo Bañados and including Carnegie’s Michael Rauch and Tom Cooper, is published by The Astrophysical Journal.

The Big Bang started the universe as a hot, murky soup of extremely energetic particles that was rapidly expanding.  As this material spread out, it cooled,

Patrick McCarthy courtesy of GMTO
October 1, 2019

Pasadena, CA—Carnegie astronomer and Vice President of the Giant Magellan Telescope (GMT), Patrick McCarthy, has been appointed as the first Director of the National Science Foundation’s newly formed National Optical-Infrared Astronomy Research Laboratory (NSF’s OIR Lab).

McCarthy has been a member of the GMT project since its inception 15 years ago, helping to bring it from a sketch on a napkin to a 100-plus person organization with 12 U.S. and international partners. In 2008, 20 years into his tenure at Carnegie, McCarthy officially expanded his role when he accepted his current leadership position at GMT.

Working with then-Carnegie Observatories

lustración por Robin Dienel, cortesía de Carnegie Institution for Science.
September 26, 2019

Washington, DC—El satélite Transiting Exoplanet Survey Satellite (TESS) de la NASA ha observado por primera vez las secuelas de una estrella que fue violentamente desgarrada por un agujero negro supermasivo. El haber capturado en pleno desarrollo un evento tan poco común ayudará a los astrónomos a entender estos misteriosos fenómenos.

Las observaciones fueron publicadas en la revista científica The Astrophysical Journal y el estudio fue liderado por el astrónomo de la Institución Carnegie, Thomas Holoien. Holoien es uno de los miembros fundadores de la red internacional de telescopios que realizó el

No content in this section.

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see

John Mulchaey is the director and the Crawford H. Greenewalt Chair of the Carnegie Observatories. He investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also a scientific editor for The Astrophysical Journal and is actively involved in public outreach and education.

Most galaxies including our own Milky Way, exist in collections known as groups, which are the most common galaxy systems and are important laboratories for studying galaxy formation and evolution. Mulchaey studies galaxy groups to understand the processes that affect most

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Josh Simon uses observations of nearby galaxies to study problems related to dark matter, chemical evolution, star formation, and the process of galaxy evolution.

In one area he looks at peculiarly dark galaxies. Interestingly, some galaxies are so dark they glow with the light of just a few hundred Suns. Simon and colleagues have determined that a tiny, very dim galaxy orbiting the Milky Way, called Segue 1, is the darkest galaxy ever found and has the highest dark matter density ever found. His team has also laid to rest a debate about whether Segue 1 really is a galaxy or a globular cluster—a smaller group of stars that lacks dark matter. Their findings make Segue 1 a

Globular clusters are spherical systems of some 100,000  gravitationally bound stars. They are among the oldest components of our galaxy and are key to understanding the age and scale of the universe. Previous measurements of their distances have compared the characteristics of different types of stars in the solar neighborhood with the same types of stars found in the clusters. However, these measurements have systematic errors, which limit the determination of cluster ages and distances.

 Ian Thompson has a different approach to the problem: using observations of exceedingly rare Detached Eclipsing Binary stars. These systems have two separated stars orbiting each