Astronomy Stories
Pasadena, CA- John Mulchaey has been appointed the new Crawford H. Greenewalt Director of the Carnegie Observatories. He is the eleventh director of the historic department, which was founded in 1904...
Explore this Story
Carnegie's John Mulchaey talks to NPR's Morning Edition about Edwin Hubble's work at the Mount Wilson Obeservatory and his famous Andromeda plates....
Explore this Story
A Carnegie-based search of nearby galaxies for their oldest stars has uncovered two stars in the Sculptor dwarf galaxy that were born shortly after the galaxy formed, approximately 13 billion years...
Explore this Story
Pasadena, CA— A Carnegie-based search of nearby galaxies for their oldest stars has uncovered two stars in the Sculptor dwarf galaxy that were born shortly after the galaxy formed, approximately 13...
Explore this Story
February 25, 2015 Quasars--supermassive black holes found at the center of distant massive galaxies--are the most-luminous beacons in the sky. These central supermassive black holes actively accrete...
Explore this Story
Washington, D.C.— Quasars--supermassive black holes found at the center of distant massive galaxies--are the most-luminous beacons in the sky. These central supermassive black holes actively accrete...
Explore this Story
Fast radio bursts are quick, bright flashes of radio waves from an unknown source in space. They are a mysterious phenomenon that last only a few milliseconds, and until now they have not been...
Explore this Story
Fast radio bursts are quick, bright flashes of radio waves from an unknown source in space. They are a mysterious phenomenon that last only a few milliseconds, and until now they have not been...
Explore this Story

Pages

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting...
Explore this Project
The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017. Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He...
Meet this Scientist
Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals...
Meet this Scientist
Director Emeritus, George Preston has been deciphering the chemical evolution of stars in our Milky Way for a quarter of a century. He and Steve Shectman started this quest using a special technique to conduct a needle-in-the-haystack search for the few, first-generation stars, whose chemical...
Meet this Scientist
You May Also Like...
Pasadena, CA— A star known by the unassuming name of KIC 8462852 in the constellation Cygnus has been raising eyebrows both in and outside of the scientific community for the past year. In 2015 a...
Explore this Story
Pasadena, CA—The Big Bang produced lots of hydrogen and helium and a smidgen of lithium. All heavier elements found on the periodic table have been produced by stars over the last 13.7 billion years...
Explore this Story
Audio Washington, D.C.— An international team of astronomers, including five Carnegie scientists, reports the discovery of two new planets orbiting a very old star that is near to our own Sun. One of...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Robin Dienel, SDSS-V, Sloan Digital Sky Survey
November 16, 2017

Pasadena, CA— The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Carnegie’s Juna Kollmeier, will move forward with mapping the entire sky following a $16 million grant from the Alfred P. Sloan Foundation. The grant will kickstart a groundbreaking all-sky spectroscopic survey for a next wave of discovery, anticipated to start in 2020.

The Sloan Digital Sky Survey has been one of the most-successful and influential surveys in the history of astronomy, creating the most-detailed three-dimensional maps of the universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects.

“For more

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory, ESO/M. Kornmesser
November 8, 2017

Pasadena, CA— It’s the celestial equivalent of a horror movie villain—a star that wouldn’t stay dead.

An international team of astronomers including Carnegie’s Nick Konidaris and Benjamin Shappee discovered a star that exploded multiple times over a period of 50 years. The finding, published by Nature, completely confounds existing knowledge of a star’s end of life, and Konidaris’ instrument-construction played a crucial role in analyzing the phenomenon.  

In September 2014, the intermediate Palomar Transient Factory team of astronomers detected a new explosion in the sky, iPTF14hls.

The light given off by the event was analyzed in order to understand the speed and

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Giant Magellan Telescope Organization, GMTO
November 3, 2017

Pasadena, CA—The Giant Magellan Telescope Organization (GMTO) today announced that it has initiated the casting of the fifth of seven mirrors that will form the heart of the Giant Magellan Telescope (GMT). The mirror is being cast at the University of Arizona's Richard F. Caris Mirror Laboratory, the facility known for creating the world’s largest mirrors for astronomy. The 25-meter diameter GMT will be sited at Carnegie's Las Campanas Observatory in the Chilean Andes and will be used to study planets around other stars and to look back to the time when the first galaxies formed. The process of “casting” the giant mirror involves melting nearly 20 tons of glass in a spinning furnace.

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
October 14, 2017

Washington, DC— On August 17, a team of four Carnegie astronomers provided the first-ever glimpse of two neutron stars colliding, opening the door to a new era of astronomy.  

Along with colleagues at UC Santa Cruz, the team used the Swope telescope at Las Campanas Observatory to discover the light produced by the merger, pinpointing the origin of a gravitational wave signal less than 11 hours after it was detected.  They also obtained the earliest spectra of the collision, which may allow them to explain how many of the universe’s heavy elements were created—a decades old question for astrophysicists.

Their discovery, named Swope Supernova Survey 2017a (or SSS17a), is

No content in this section.

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains controversial because of

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT will

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/ccd/caps.

The earliest galaxies are those that are most distant. Staff associate Dan Kelson is interested in how these ancient relics evolved. The latest generation of telescopes and advanced spectrographs—instruments that analyze light to determine properties of celestial objects—allow astronomers to accurately measure enormous numbers of distant galaxies. Kelson uses the Magellan 6.5-meter telescopes and high-resolution imaging from the Hubble Space Telescope to study distant galaxies.His observations of their masses, sizes and morphologies allow him to directly measure their stars' aging to infer their formation history. Kelson is the principal investigator of the Carnegie-Spitzer-IMACS

Staff member emeritus François Schweizer studies galaxy assembly and evolution by observing nearby galaxies, particularly how collisions and mergers affect their properties. His research has added to the awareness that these events are dominant processes in shaping galaxies and determining their stellar and gaseous contents.

When nearby galaxies collide and merge they yield valuable clues about processes that occurred much more frequently in the younger, distant universe. When two gas-rich galaxies collide, their pervasive interstellar gas gets compressed, clumps into dense clouds, and fuels the sudden birth of billions of new stars and thousands of star clusters.

Some of

Galacticus is not a super hero; it’s a super model used to determine the formation and evolution of the galaxies. Developed by Andrew Benson, the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, it is one of the most advanced models of galaxy formation available.

Rather than building his model around observational data, Benson’s Galacticus relies on known laws of physics and the so-called N-body problem, which predicts the motions of celestial bodies that interact gravitationally in groups. Galacticus’ now an open- source model produces results as stunning 3-D videos.

Some 80% of the matter in the universe cannot be seen. This unseen matter is believed

We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.

 Astronomers have a basic understanding of this chemical enrichment cycle, but chemical evolution and nulceosynthesis are still not fully understood. Andrew McWilliam measures the detailed chemical composition of Red Giant stars, which are about as old as the galaxy and retain their original chemical composition.  He is seeking answer to questions such as: What are the sites of nucleosynthesis? What modulates element