Astronomy Stories
Pasadena, CA – The Giant Magellan Telescope Organization (GMTO) today announced the appointment of Walter E. Massey, PhD, and Taft Armandroff, PhD, to the positions of Board Chair and Vice...
Explore this Story
Pasadena, CA— A star known by the unassuming name of KIC 8462852 in the constellation Cygnus has been raising eyebrows both in and outside of the scientific community for the past year. In 2015...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, M. Kornmesser
Pasadena, CA— Quasars are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They shine so brightly that they are often referred to as beacons and are among...
Explore this Story
Washington, DC— Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe. While many dwarf...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Texas A&M,
Pasadena, CA—An international team of astronomers, including Carnegie’s Eric Persson, has charted the rise and fall of galaxies over 90 percent of cosmic history. Their work, which...
Explore this Story
Johanna Teske was awarded the third Postdoctoral Innovation and Excellence (PIE) Award, which is made through nominations from the department directors and chosen by the Office of the President. She...
Explore this Story
Carnegie’s Mark Seibert, Barry Madore, Jeff Rich, and team have discovered that what was believed since the 1960s to be a relatively boring, small elliptical galaxy ...
Explore this Story
Pasadena, CA—Astronomers have believed since the 1960s that a galaxy dubbed UGC 1382 was a relatively boring, small elliptical galaxy. Ellipticals are the most common type of galaxy and lack...
Explore this Story


The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.  Astronomers have a basic...
Meet this Scientist
Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy...
Meet this Scientist
You May Also Like...
Pasadena, CA—An international team of astronomers, including Carnegie’s Eric Persson, has charted the rise and fall of galaxies over 90 percent of cosmic history. Their work, which includes some of...
Explore this Story
What happens when a star behaves like it exploded, but it’s still there? About 170 years ago, astronomers witnessed a major outburst by Eta Carinae, the brightest known star in our Milky Way...
Explore this Story
Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it can be a tool to study...
Explore this Story

Explore Carnegie Science

Illustration by James Josephides, courtesy of Swinburne Astronomy Productions.
November 12, 2019

Pasadena, CA—A star traveling at ultrafast speeds after being ejected by the supermassive black hole at the heart of our galaxy was spotted by an international team of astronomers including Carnegie’s Ting Li and Alex Ji. Their work is published by Monthly Notices of the Royal Astronomical Society. Hurtling at the blistering speed of 6 million kilometers per hour, the star is moving so fast that it will leave the Milky Way and head into intergalactic space.

Called S5-HVS1, the star was discovered in the Grus, or Crane, constellation by lead author Sergey Koposov of Carnegie Mellon University as part of the Southern Stellar Stream Spectroscopic Survey led by Carnegie

Ancient gas cloud courtesy of the Max Planck Society.
November 8, 2019

Washington, DC— The discovery of a 13 billion-year-old cosmic cloud of gas enabled a team of Carnegie astronomers to perform the earliest-ever measurement of how the universe was enriched with a diversity of chemical elements.  Their findings reveal that the first generation of stars formed more quickly than previously thought. The research, led by recent Carnegie-Princeton fellow Eduardo Bañados and including Carnegie’s Michael Rauch and Tom Cooper, is published by The Astrophysical Journal.

The Big Bang started the universe as a hot, murky soup of extremely energetic particles that was rapidly expanding.  As this material spread out, it cooled,

Patrick McCarthy courtesy of GMTO
October 1, 2019

Pasadena, CA—Carnegie astronomer and Vice President of the Giant Magellan Telescope (GMT), Patrick McCarthy, has been appointed as the first Director of the National Science Foundation’s newly formed National Optical-Infrared Astronomy Research Laboratory (NSF’s OIR Lab).

McCarthy has been a member of the GMT project since its inception 15 years ago, helping to bring it from a sketch on a napkin to a 100-plus person organization with 12 U.S. and international partners. In 2008, 20 years into his tenure at Carnegie, McCarthy officially expanded his role when he accepted his current leadership position at GMT.

Working with then-Carnegie Observatories

lustración por Robin Dienel, cortesía de Carnegie Institution for Science.
September 26, 2019

Washington, DC—El satélite Transiting Exoplanet Survey Satellite (TESS) de la NASA ha observado por primera vez las secuelas de una estrella que fue violentamente desgarrada por un agujero negro supermasivo. El haber capturado en pleno desarrollo un evento tan poco común ayudará a los astrónomos a entender estos misteriosos fenómenos.

Las observaciones fueron publicadas en la revista científica The Astrophysical Journal y el estudio fue liderado por el astrónomo de la Institución Carnegie, Thomas Holoien. Holoien es uno de los miembros fundadores de la red internacional de telescopios que realizó el

No content in this section.

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

Like some other Carnegie astronomers, staff associate Jeffrey Crane blends science with technology. His primary interests are instrumentation, the Milky Way and the neighboring Local Group of galaxies, in addition to extrasolar planets. In 2004, then-research associate Crane joined Steve Shectman, Ian Thompson, and the Carnegie team to design the Planet Finder Spectrograph (PFS), now installed and operational on the Magellan Clay telescope.

Radial velocities are the speeds and directions of stars moving away from or toward the Earth.  Extrasolar planet hunters use them to detect the telltale wobbles of stars that are gravitationally tugged by orbiting planets. Astronomical

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy

Globular clusters are spherical systems of some 100,000  gravitationally bound stars. They are among the oldest components of our galaxy and are key to understanding the age and scale of the universe. Previous measurements of their distances have compared the characteristics of different types of stars in the solar neighborhood with the same types of stars found in the clusters. However, these measurements have systematic errors, which limit the determination of cluster ages and distances.

 Ian Thompson has a different approach to the problem: using observations of exceedingly rare Detached Eclipsing Binary stars. These systems have two separated stars orbiting each