Astronomy Stories
Take a tour with Cynthia Hunt through eight foundational images from the Carnegie Observatories' plate collection in Nautilus magazine....
Explore this Story
"Supernovae shape the universe we live in and there are still many unanswered questions about these explosions, even for the common ones," Ben Shappee tells The Washington Post about the...
Explore this Story
NPR covers the discovery of the most-luminous supernova by a team of astronomers, including Ben Shappee....
Explore this Story
Pasadena, CA—A team of astronomers, including Carnegie’s Benjamin Shappee, Nidia Morrell, and Ian Thompson, has discovered the most-luminous supernova ever observed, called ASAS-SN-15lh....
Explore this Story
Pasadena, CA— New work from a team of astronomers led by Carnegie’s Jennifer van Saders indicates that one recently developed method for determining a star’s age needs to be...
Explore this Story
This video was part of the 2015 Open House at the Carnegie Observatories in Pasadena, CA,. We show plates from 1894 to 1971, how they were made at Mount Wilson and Palomar Observatories, and it...
Explore this Story
Pasadena, CA – November 11, 2015 – Leading scientists, senior officials, and supporters from an international consortium of universities and research institutions are gathering on a...
Explore this Story
Scientists, including researchers from the Carnegie Institution for Science, discuss the search for extrasolar planets. This video is provided courtesy of NASA.
Explore this Story

Pages

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the...
Meet this Scientist
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas...
Meet this Scientist
You May Also Like...
Leading scientists, senior officials, and supporters from an international consortium of universities and research institutions are gathering on a remote mountaintop high in the Chilean Andes today...
Explore this Story
Wendy Freedman, the Crawford H. Greenewalt Director of the Carnegie Observatories and chair of the Giant Magellan Telescope Organization has accepted a position as a University Professor of Astronomy...
Explore this Story
Astronomer and photographer Yuri Beletsky captured today's lunar eclipse from Carnegie's Las Campanas Observatory Larger version available here.
Explore this Story

Explore Carnegie Science

Decker French
July 24, 2019

Pasadena, CA— Carnegie’s K. Decker French was recognized by the Astronomical Society of the Pacific with its Robert J. Trumpler Award, which is presented to a recent Ph.D. graduate “whose research is considered unusually important to astronomy.” French completed her doctorate at the University of Arizona Tucson in 2017 and is currently a Hubble Fellow at the Carnegie Observatories.

Her research focuses on a radio survey of the gas clouds within galaxies that have recently ended the star-forming phase of their evolution.  The lack of star formation in these galaxies has long been assumed to be caused by a depletion of the cold, dense molecular gases

Vera measuring spectra with DTM measuring engine, courtesy of Carnegie Science.
July 24, 2019

Washington, DC—The House approved yesterday a bill to name the Large Synoptic Survey Telescope in honor of late Carnegie scientist Vera Rubin, who confirmed the existence of dark matter.

Rubin received the National Medal of Science for her research on how stars orbit their galactic centers. She revealed that stars at varying distances from the center of a spiral galaxy orbit at the same speed, rather than at decreasing speeds away from the center, providing undeniable evidence that each galaxy is embedded in a halo of dark matter holding its mass together.

She died in December 2016.

“Vera demonstrated intellectual courage and a tireless commitment to

An image of the Hubble Space Telescope floating against the background of space courtesy of NASA.
July 16, 2019

Pasadena, CA—A team of collaborators from Carnegie and the University of Chicago used red giant stars that were observed by the Hubble Space Telescope to make an entirely new measurement of how fast the universe is expanding, throwing their hats into the ring of a hotly contested debate. Their result—which falls squarely between the two previous, competing values—will be published in The Astrophysical Journal.

Nearly a century ago, Carnegie astronomer Edwin Hubble discovered that the universe has been growing continuously since it exploded into being during the Big Bang. But precisely how fast it’s moving—a value termed the Hubble constant in his

This cartoon courtesy of Anthony Piro illustrates three possibilities for the origin of the mysterious hydrogen emissions from the Type IA supernova called ASASSN-18tb that were observed by the Carnegie astronomers.
May 7, 2019

Pasadena, CA—Detection of a supernova with an unusual chemical signature by a team of astronomers led by Carnegie’s Juna Kollmeier—and including Carnegie’s Nidia Morrell, Anthony Piro, Mark Phillips, and Josh Simon—may hold the key to solving the longstanding mystery that is the source of these violent explosions. Observations taken by the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile were crucial to detecting the emission of hydrogen that makes this supernova, called ASASSN-18tb, so distinctive.   

Their work is published in Monthly Notices of the Royal Astronomical Society.

Type Ia supernovae play a

No content in this section.

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Staff member emeritus François Schweizer studies galaxy assembly and evolution by observing nearby galaxies, particularly how collisions and mergers affect their properties. His research has added to the awareness that these events are dominant processes in shaping galaxies and determining their stellar and gaseous contents.

When nearby galaxies collide and merge they yield valuable clues about processes that occurred much more frequently in the younger, distant universe. When two gas-rich galaxies collide, their pervasive interstellar gas gets compressed, clumps into dense clouds, and fuels the sudden birth of billions of new stars and thousands of star clusters.

Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy

Galacticus is not a super hero; it’s a super model used to determine the formation and evolution of the galaxies. Developed by Andrew Benson, the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, it is one of the most advanced models of galaxy formation available.

Rather than building his model around observational data, Benson’s Galacticus relies on known laws of physics and the so-called N-body problem, which predicts the motions of celestial bodies that interact gravitationally in groups. Galacticus’ now an open- source model produces results as stunning 3-D videos.

Some 80% of the matter in the universe cannot be seen. This unseen

Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our Solar System, which allow us to understand how the Solar System came to be.

The major planets in our Solar System travel around the Sun in fairly circular orbits and on similar planes. However, since the discovery of wildly varying planetary systems around other stars, and given our increased understanding about small, primordial bodies in our celestial neighborhood, the notion that