Through late February, five planets will align in early morning sky, and can be seen unaided. Jackie Faherty tells NPR it is like the planetary Academy Awards....
Explore this Story
“It was probably the runt of the family,” Scott Sheppard tells the L.A. Times of the theorized ninth planet. Sheppard's 2014 co-discovery of the planetoid 2012 VP113, popularly...
Explore this Story
"Estimates range as high as there being one habitable Earth-like planet for every star in our galaxy. As someone who has lived through the ups and downs of the history of the field of...
Explore this Story
Smithsonian Magazine talks Bob Hazen about "Life's Rocky Start" the NOVA special that features his work on mineral evolution and ecology. “We see this intertwined co-...
Explore this Story
Washington, DC— A team made up almost entirely of current and former Carnegie scientists has discovered a highly unusual planetary system comprised of a Sun-like star, a dwarf star, and an...
Explore this Story
Washington, DC— As astronomers continue to find more and more planets around stars beyond our own Sun, they are trying to discover patterns and features that indicate what types of planets are...
Explore this Story
Washington, D.C.—New observations from an international geophysics team, including Carnegie’s Lara Wagner, suggest that the standard belief that the Earth’s rigid tectonic plates...
Explore this Story
“We can’t explain these objects’ orbits from what we know about the solar system,” says Carnegie's Scott Sheppard in Science Magazine's coverage of his announcement at...
Explore this Story

Pages

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the...
Explore this Project
CALL FOR PROPOSALS Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas. Carnegie Science Venture grants are internal awards of up to $100,000 that are...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant...
Meet this Scientist
Volcanologist Diana Roman is interested in the mechanics of how magma moves through the Earth’s crust, and in the structure, evolution, and dynamics of volcanic conduit systems. Her ultimate goal is to understand the likelihood and timing of volcanic eruptions. Most of Roman’s research...
Meet this Scientist
Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas...
Meet this Scientist
You May Also Like...
Carnegie’s Scott Sheppard and his colleagues—Northern Arizona University’s Chad Trujillo, and the University of Hawaii’s David Tholen—are once again redefining our Solar...
Explore this Story
Pasadena, CA–The international consortium of the Giant Magellan Telescope (GMT) project has passed two major reviews and is positioned to enter the construction phase. When completed, the 25-meter...
Explore this Story
Washington, D.C.—A team of scientists, including Carnegie’s Alan Boss, has discovered two Earth-like planets in the habitable orbit of a Sun-like star. Their work is published in Science Express.  ...
Explore this Story

Explore Carnegie Science

Earth's magnetic field shields it from ionizing particles
July 6, 2020

Washington, DC— How did the chemical makeup of our planet’s core shape its geologic history and habitability?

Life as we know it could not exist without Earth’s magnetic field and its ability to deflect dangerous ionizing particles from the solar wind and more far-flung cosmic rays. It is continuously generated by the motion of liquid iron in Earth’s outer core, a phenomenon called the geodynamo.

Despite its fundamental importance, many questions remain unanswered about the geodynamo’s origin and the energy sources that have sustained it over the millennia.

New work from an international team of researchers, including current and former

April 15, 2020

Washington, DC— Carnegie mineralogist Robert Hazen was inducted last month as a foreign member of the Russian Academy of Sciences—the nation’s highest-level scientific society, originally founded by Peter the Great. This is a rare honor for an American researcher.

The ceremony, originally scheduled for the end of March, was postponed by the COVID-19 pandemic.

A Staff Scientist at Carnegie’s Earth and Planets Laboratory, Hazen pioneered the concept of mineral evolution—linking an explosion in mineral diversity to the rise of life on Earth—and developed  the idea of mineral ecology—which analyzes the spatial distribution of the

Comparing carbon's compatibility with silicates and with iron
March 31, 2020

Washington, DC— Carbon is essential for life as we know it and plays a vital role in many of our planet’s geologic processes—not to mention the impact that carbon released by human activity has on the planet’s atmosphere and oceans. Despite this, the total amount of carbon on Earth is a mystery, because much of it remains inaccessible in the planet’s depths.  

New work published this week in Proceedings of the National Academy of Sciences reveals how carbon behaved during Earth’s violent formative period. The findings can help scientists understand how much carbon likely exists in the planet’s core and the contributions it could make

 Illustration of DS Tuc AB by M. Weiss, CfA.
March 9, 2020

Pasadena, CA— A new kind of astronomical observation helped reveal the possible evolutionary history of a baby Neptune-like exoplanet.

To study a very young planet called DS Tuc Ab, a Harvard & Smithsonian Center for Astrophysics-led team that included six Carnegie astronomers—Johanna Teske, Sharon Wang, Stephen Shectman, Paul Butler, Jeff Crane, and Ian Thompson—developed a new observational modeling tool. Their work will be published in The Astrophysical Journal Letters and represents the first time the orbital tilt of a planet younger than 45 million years—or about 1/100th the age of the Solar System—has been measured.

“A

July 30, 2020

Join us to learn about how to study the mineralogy of another planet from Carnegie Research Scientist Shaunna Morrison. This is the ninth virtual program in a series of online conversations with several of our exciting investigators.  

Minerals are novel combinations of elements. At our Earth and Planets Laboratory, Morrison uses data-driven approaches to study the forces that shaped a mineral's formation in a particular location. She and her collaborators use advanced computing tools to probe for connections in the makeup of Earth's minerals that can tell us about our planet's current and historical geologic cycles and how the geosphere

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas giant and ice giant protoplanets. His observational works centers on the Carnegie Astrometric Planet Search project, which has been underway for the last decade at Carnegie's Las Campanas Observatory in Chile.

While fragmentation is universally recognized as the dominant formation mechanism for binary and multiple stars, there are still major questions. The most important of these