Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, Proxima Centauri, Proxima b
Washington, DC— An international team of astronomers including Carnegie’s Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Jackie Faherty, American Museum of Natural History
Washington, DC— Brown dwarfs are smaller than stars, but more massive than giant planets. As such, they provide a natural link between astronomy and planetary science. However, they also show...
Explore this Story
Washington, DC— New work from Carnegie’s Peter Driscoll suggests Earth’s ancient magnetic field was significantly different than the present day field, originating from several poles rather than the...
Explore this Story
Washington, D.C.— When dormant volcanoes are about to erupt, they show some predictive characteristics—seismic activity beneath the volcano starts to increase, gas escapes through the vent, or the...
Explore this Story
Don Francis, McGill University, Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Washington, DC— New work from a team including Carnegie’s Hanika Rizo and Richard Carlson, as well as Richard Walker from the University of Maryland, has found material in rock formations that dates...
Explore this Story
Washington, DC— Planet-hunting is an ongoing process that’s resulting in the discovery of more and more planets orbiting distant stars. But as the hunters learn more about the variety among the...
Explore this Story
Washington, DC—A team of astronomers from Carnegie and Western University in Ontario, Canada, has discovered one of the youngest and brightest free-floating, planet-like objects within relatively...
Explore this Story
Washington, D.C.—Scientists have long been puzzled about what makes Mercury’s surface so dark. The innermost planet reflects much less sunlight than the Moon, a body on which surface darkness is...
Explore this Story

Pages

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet...
Explore this Project
Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.” ...
Explore this Project
The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission to orbit Mercury following three flybys of that planet is a scientific investigation of the planet Mercury. Understanding Mercury, and the forces that have shaped it is fundamental to understanding the terrestrial...
Explore this Project
Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s...
Meet this Scientist
Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's ancient geodynamic...
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
You May Also Like...
Daily Mail: A shockwave from a catastrophic supernova explosion may have triggered the birth of our Solar System when it crashed into a cloud of gas. Scientists studying this process, Carnegie's Alan...
Explore this Story
Washington, DC — A team of scientists, including Carnegie's Conel Alexander and Jianhua Wang, studied the hydrogen in water from the Martian interior and found that Mars formed from similar building...
Explore this Story
Washington, DC — Molecules containing large chains of carbon and hydrogen--the building blocks of all life on Earth--have been the targets of missions to Mars from Viking to the present day. While...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA/JPL-Caltech
September 5, 2017

Washington, DC— New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of the star’s seven known planets. If gas giant planets are found in this system’s outer edges, it could help scientists understand how our own Solar System’s gas giants like Jupiter and Saturn formed.

Earlier this year, NASA’s Spitzer Space Telescope thrilled the world as it revealed that TRAPPIST-1, an ultra-cool dwarf star in the Aquarius constellation, was the first-known system of seven Earth-sized planets orbiting a single star. Three of these planets are in the so-called habitable zone—

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Alan Boss
August 3, 2017

Washington, DC— According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the exploding star into a neighboring cloud of dust and gas, causing it to collapse in on itself and form the Sun and its surrounding planets.

New work from Carnegie’s Alan Boss offers fresh evidence supporting this theory, modeling the Solar System’s formation beyond the initial cloud collapse and into the intermediate stages of star formation. It is published by The Astrophysical Journal.

One very important constraint for testing theories of Solar System formation is meteorite chemistry.

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, RRUFF
August 1, 2017

Washington, DC—Applying big data analysis to mineralogy offers a way to predict minerals missing from those known to science, as well as where to find new deposits, according to a groundbreaking study.

In a paper published by American Mineralogist, scientists report the first application to mineralogy of network theory (best known for analysis of e.g. the spread of disease, terrorist networks, or Facebook connections).

The results, they say, pioneer a potential way to reveal mineral diversity and distribution worldwide, their evolution through deep time, new trends, and new deposits of valuable minerals such as gold or copper.

Led by Shaunna Morrison of the Deep

July 20, 2017

Several of our geochemistry, cosmochemistry, and astrobiology experts at Carnegie's Department of Terrestrial Magnetism and Geophysical Laboratory study the Moon—how it formed and the source of its water and minerals. For Moon day, we're taking a look back at some of our favorite Carnegie Moon news from the past few years. Take a look! 

Research may solve lunar fire fountain mystery

Tiny beads of volcanic glass found on the lunar surface during the Apollo missions are a sign that fire fountain eruptions took place on the Moon’s surface. Now, scientists from Brown University and the Carnegie Institution for Science have identified the volatile gas that drove those eruptions.   MORE

No content in this section.

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist. Image

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed by four years at the University of California,

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary census.

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our Solar System, which allow us to understand how the Solar System came to be.

The major planets in our Solar System travel around the Sun in fairly circular orbits and on similar planes. However, since the discovery of wildly varying planetary systems around other stars, and given our increased understanding about small, primordial bodies in our celestial neighborhood, the notion that our

Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's ancient geodynamic processes.

Shirey’s past, current, and future studies reflect the diversity of continental rocks, encompassing a range of studies that include rocks formed anywhere from the deep mantle to the surface crust. His work spans a wide range of geologic settings such as volcanic rocks in continental rifts (giant crustal breaks where continents split apart), ancient and present subduction zones

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical fingerprints of

Roiling cauldrons of liquid-laden material flow within Earth’s rocky interior. Understanding how this matter moves and changes is essential to deciphering Earth’s formation and evolution as well as the processes that create seismic activity, such as earthquakes and volcanoes. Bjørn Mysen probes this hidden environment in the laboratory and, based on his results, models can help explain what goes on in this remote realm.

Mysen investigates changes in the atomic properties of molten silicates at high pressures and temperatures that pervade the interior Earth. Silicates comprise most of the Earth's crust and mantle. He uses devices, such as the diamond anvil cell, to subject melts