Sarah Stewart was awarded a prestigious MacArthur fellowship for: “Advancing new theories of how celestial collisions give birth to planets and their natural satellites, such as the Earth...
Explore this Story
Washington, DC—Carnegie’s Scott Sheppard and his colleagues—Northern Arizona University’s Chad Trujillo,...
Explore this Story
Erik Hauri in the lab at Carnegie's Department of Terrestrial Magnetism
Washington, DC—Carnegie geochemist Erik Hauri, whose work upended our understanding of the Moon’s formation and the importance of water in Earth’s interior, died Wednesday in North...
Explore this Story
Visualization rendered by Dan Tell from the California Academy of Sciences using SCISS Uniview software and directed/written by Jackie Faherty from the American Museum of Natural History.
Washington, DC—New work from Carnegie’s Jonathan Gagné and the American Museum of Natural History’s Jacqueline Faherty identified nearly a thousand potential members and 31...
Explore this Story
: A blue, boron-bearing diamond with dark inclusions of a mineral called ferropericlase, which were examined as part of this study.  This gem weighs 0.03 carats.  Photo by Evan Smith/GIA.
Washington, DC—Blue diamonds—like the world-famous Hope Diamond at the National Museum of Natural History—formed up to four times deeper in the Earth’s mantle than most other...
Explore this Story
An illustration showing how the orbits of the newly discovered moons (bold) fit into the known orbital groupings of the Jovian moons (not bold). The "oddball" with the proposed name Valetudo orbits in the prograde, but crosses the orbits of the planet's o
Washington, DC—Twelve new moons orbiting Jupiter have been found—11 “normal” outer moons, and one that they’re calling an “oddball.”  This brings...
Explore this Story
Washington, DC—A team of scientists including Carnegie’s Michael Ackerson and Bjørn Mysen revealed that granites from Yosemite National Park contain minerals that crystallized at...
Explore this Story

Pages

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of...
Explore this Project
Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1...
Explore this Project
Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 -...
Explore this Project
Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas...
Meet this Scientist
Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life...
Meet this Scientist
Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also...
Meet this Scientist
You May Also Like...
Washington, DC — Molecules containing large chains of carbon and hydrogen--the building blocks of all life on Earth--have been the targets of missions to Mars from Viking to the present day. While...
Explore this Story
Washington, D.C.—Until now, Earth was the only planet known to have vast reservoirs of water in its interior. Scientists analyzed the water content of two Martian meteorites originating from inside...
Explore this Story
Washington, D.C. — Mineral evolution posits that Earth’s near-surface mineral diversity gradually increased through an array of chemical and biological processes. A dozen different species in...
Explore this Story

Explore Carnegie Science

Artist’s concept by Robin Dienel, courtesy of Carnegie Institution for Science
January 14, 2020

Washington, DC— A “cold Neptune” and two potentially habitable worlds are part of a cache of five newly discovered exoplanets and eight exoplanet candidates found orbiting nearby red dwarf stars, which are reported in The Astrophysical Journal Supplement Series by a team led by Carnegie’s Fabo Feng and Paul Butler.

The two potentially habitable planets are orbiting GJ180 and GJ229A, which are among the nearest stars to our own Sun, making them prime targets for observations by next-generation space- and land-based telescopes.  They are both super-Earths with at least 7.5 and 7.9 times our planet’s mass and orbital periods of 106 and 122 days

December 16, 2019

Washington, DC— Every school child learns about the water cycle—evaporation, condensation, precipitation, and collection. But what if there were a deep Earth component of this process happening on geologic timescales that makes our planet ideal for sustaining life as we know it?

New work published in the Proceedings of the National Academy of Sciences by Carnegie’s Yanhao Lin and Michael Walter—along with former Carnegie scientists and ongoing collaborators Ho-Kwang “Dave” Mao and Qingyang Hu of the Center for High Pressure Science and Technology Advanced Research Shanghai and Yue Meng of Argonne National Laboratory—demonstrates that a key

Image Credit: NASA, ESA, JPL, SSI, Cassini Imaging Team
December 9, 2019

Washington, DC— Saturn’s icy moon Enceladus is of great interest to scientists due to its subsurface ocean, making it a prime target for those searching for life elsewhere. New research led by Carnegie’s Doug Hemingway reveals the physics governing the fissures through which ocean water erupts from the moon’s icy surface, giving its south pole an unusual “tiger stripe” appearance.

“First seen by the Cassini mission to Saturn, these stripes are like nothing else known in our Solar System,” lead author Hemingway explained. “They are parallel and evenly spaced, about 130 kilometers long and 35 kilometers apart. What makes them

Artist’s conception of Kepler-432b, courtesy of MarioProtIV/Wikimedia Commons.
December 3, 2019

Pasadena, CA— A surprising analysis of the composition  of gas giant exoplanets and their host stars shows that there isn’t a strong correlation between their compositions when it comes to elements heavier than hydrogen and helium, according to new work led by Carnegie’s Johanna Teske and published in The Astronomical Journal. This finding has important implications for our understanding of the planetary formation process. 

In their youths, stars are surrounded by a rotating disk of gas and dust from which planets are born. Astronomers have long wondered how much a star’s makeup determines the raw material from which planets are constructed—

No content in this section.

Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 - 2003, CAN 3 from 2003 - 2008, and CAN 5 from 2009 - 2015. The Carnegie team focused on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich primitive planetary bodies, prebiotic molecular synthesis through catalyzing with

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new techniques to analyze different variants of the same atom—isotopes—in small samples. In related studies, he uses space-based X-ray and gamma-ray instrumentation to determine the composition of planetary surfaces. He was part of the 2000-2001 scientific team to hunt for meteorites in Antarctica.

Nittler is especially interested in presolar grains contained in meteorites and in what

Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes—atomic variants of elements with the same number of protons but different numbers of neutrons. Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or fingerprints, of the oxygen isotopes 16O, 17O, and 18O. Weathering, ground water, and direct deposition of atmospheric aerosols change the ratios of the isotopes in a rock revealing a lot about the past climate.

Douglas Rumble’s research is centered on these three stable isotopes of oxygen and the four stable isotopes of sulfur 32S , 33S , 34S, and 36S. In addition to

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical