AGU Logo
Washington, DC— Carnegie scientists Michael Walter and Robert Hazen have been elected 2019 Fellows of the American Geophysical Union. Fellows are recognized for visionary leadership and...
Explore this Story
Telica Volcano in Nicaragua, courtesy of the Carnegie Institution for Science.
Washington, DC—Some volcanoes take their time—experiencing protracted, years-long periods of unrest before eventually erupting. This makes it difficult to forecast when they pose a danger...
Explore this Story
An artist’s illustration courtesy of Carl Sagan Institute/Jack Madden
Pasadena, CA— Sometimes there is more to a planetary system than initially meets the eye.  Ground-based observations following up on the discovery of a small planet by NASA’s...
Explore this Story
A $2.7 million multi-disciplinary, multi-institutional NSF-Frontiers of Earth Science grant has been awarded to a team led by Carnegie’s Lara Wagner to study an active flat slab in Colombia. A...
Explore this Story
The planet Earth on April 17, 2019, courtesy NOAA/NASA EPIC Team.
Washington, DC—The first minerals to form in the universe were nanocrystalline diamonds, which condensed from gases ejected when the first generation of stars exploded. Diamonds that...
Explore this Story
The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a...
Explore this Story
Artist’s impression of the surface of the planet Proxima b courtesy of ESO/M. Kornmesser.
Washington, DC—Which of Earth’s features were essential for the origin and sustenance of life? And how do scientists identify those features on other worlds? A team of Carnegie ...
Explore this Story
Images of diamonds from Sierra Leone with sulfur-containing mineral inclusions courtesy of the Gemological Institute of America
Washington, DC— The longevity of Earth’s continents in the face of destructive tectonic activity is an essential geologic backdrop for the emergence of life on our planet. This stability...
Explore this Story

Pages

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this...
Meet this Scientist
Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates...
Meet this Scientist
Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's...
Meet this Scientist
You May Also Like...
The American Institute of Physics’ Center for History of Physics has awarded the Carnegie Institution for Science a $10,000 grant to organize and preserve the archives of scientist Oliver H....
Explore this Story
NASA’s Curiosity rover has discovered new “tough” organic molecules in three-billion-year-old sedimentary rocks on Mars, increasing the chances that the record of habitability and...
Explore this Story
Washington, D.C.--Scientists with the Giant Magellan Telescope Organization have completed the most challenging large astronomical mirror ever made. The mirror will be part of the 25-meter Giant...
Explore this Story

Explore Carnegie Science

AGU Logo
August 19, 2019

Washington, DC— Carnegie scientists Michael Walter and Robert Hazen have been elected 2019 Fellows of the American Geophysical Union.

Fellows are recognized for visionary leadership and scientific excellence that has fundamentally advanced research in the Earth and space sciences. “Their breadth of interests and the scope of their contributions are remarkable and often groundbreaking,” said the organization in its announcement of the new class.  

The Director of Carnegie’s Geophysical Laboratory, Walter is an experimental petrologist whose research focuses on early Earth’s history, shortly after the planet accreted from the cloud of gas

Telica Volcano in Nicaragua, courtesy of the Carnegie Institution for Science.
August 6, 2019

Washington, DC—Some volcanoes take their time—experiencing protracted, years-long periods of unrest before eventually erupting. This makes it difficult to forecast when they pose a danger to their surrounding areas, but Carnegie’s Diana Roman and Penn State’s Peter LaFemina are trying to change that.

“Dormancy, brief unrest, eruption—this is a familiar pattern for many volcanoes, and for many parents,” joked Roman. “But for some volcanoes the unrest is anything but brief—potentially lasting for decades.”

It turns out that these so-called “persistently restless volcanoes” experience three different

An artist’s illustration courtesy of Carl Sagan Institute/Jack Madden
July 31, 2019

Pasadena, CA— Sometimes there is more to a planetary system than initially meets the eye. 

Ground-based observations following up on the discovery of a small planet by NASA’s Transiting Exoplanet Survey Satellite (TESS) revealed two additional planets in the same system, one of which is located far enough from its star to be potentially habitable.  These findings were announced in Astronomy & Astrophysics by an international team that included several Carnegie astronomers and instrumentation specialists.

The newly found exoplanets orbit a star named GJ 357, an M-type dwarf that’s about one-third of the Sun’s mass and located 31

July 15, 2019

A $2.7 million multi-disciplinary, multi-institutional NSF-Frontiers of Earth Science grant has been awarded to a team led by Carnegie’s Lara Wagner to study an active flat slab in Colombia. A flat slab is produced when a tectonic plate descends to depths of about 30 to 60 miles (~50-100 km) then flattens and travels horizontally for hundreds of miles before descending farther into Earth’s mantle. Flat slabs are unlike standard subduction, in which a tectonic plate descends more steeply beneath another plate directly into the Earth. 

Because flat slabs travel horizontally directly beneath the overriding continents for hundreds of miles, they have more extensive

No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young. None of the accepted paradigms explain why the magmatic and tectonic activity extend so far east of the North American plate margin. By applying numerous techniques ranging from geochemistry and petrology to active and passive seismic imaging to geodynamic modeling, the researchers examine an assemblage of new data that will provide key information about the roles of lithosphere

Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this data from continental areas of the planet that have not been studied before to better understand the elastic properties of Earth’s crust and upper mantle, the rigid region called the lithosphere.

By its nature seismology is indirect research and has limitations for interpreting features like temperature, melting, and exact composition. So Wagner looks at the bigger picture. She

Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that measure tiny strains the Earth undergoes.

Strainmeter data has led to the discovery of events referred to as slow earthquakes that are similar to regular earthquakes except that the fault motions take place over much longer time scales. These were first detected in south-east Japan and have since been seen in a number of different environments including the San Andreas Fault in California and

Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-