LaPaz Icefield 02342 seen here in thin section under polarized light courtesy of  Carles Moyano-Cambero.
Washington, DC—An ancient sliver of the building blocks from which comets formed was discovered encased inside a meteorite like an insect in amber by a Carnegie-led research team. The finding,...
Explore this Story
Artist's conception of HD 21749c, the first Earth-sized planet found by NASA's Transiting Exoplanets Survey Satellite (TESS) by Robin Dienel courtesy of Carnegie Institution for Science
Pasadena, CA—A nearby system hosts the first Earth-sized planet discovered by NASA’s Transiting Exoplanets Survey Satellite, as well as a warm sub-Neptune-sized world, according to a new...
Explore this Story
Artist's conception. Credit Rensselaer Polytechnic Institute
Washington, DC—Carnegie’s Andrew Steele is a member of the Earth First Origins project, led by Rensselaer Polytechnic Institute’s Karyn Rogers, which has been awarded a $9 million...
Explore this Story
Self-portrait of NASA's Curiosity Mars rover on Vera Rubin Ridge with Mount Sharp poking up just behind the vehicle's mast. Image is courtesy of NASA/JPL-Caltech/MSSS Curiosity.
Washington, DC—The density of rock layers on the terrain that climbs from the base of Mars’ Gale Crater to Mount Sharp is less dense than expected, according to the latest report on the...
Explore this Story
Artist concept of 2018 VG18, nicknamed "Farout.” Illustration by Roberto Molar Candanosa is courtesy of the Carnegie Institution for Science.
Washington, DC— A team of astronomers has discovered the most-distant body ever observed in our Solar System.  It is the first known Solar System object that has been detected at a...
Explore this Story
Artist’s impression of Barnard’s Star planet under the orange tinted light from the star.  Credit: IEEC/Science-Wave - Guillem Ramisa
Washington, DC—An international team including five Carnegie astronomers has discovered a frozen Super-Earth orbiting Barnard’s star, the closest single star to our own Sun. The...
Explore this Story
Mars mosaic courtesy of NASA
Washington, DC—Mars’ organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian...
Explore this Story
NASEM astrobiology briefing artwork
Washington, DC—NASA should incorporate astrobiology into all stages of future exploratory missions, according to a...
Explore this Story

Pages

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
Roiling cauldrons of liquid-laden material flow within Earth’s rocky interior. Understanding how this matter moves and changes is essential to deciphering Earth’s formation and evolution as well as the processes that create seismic activity, such as earthquakes and volcanoes. Bjø...
Meet this Scientist
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is...
Meet this Scientist
You May Also Like...
Washington, DC— In the race to discover a proposed ninth planet in our Solar System, Carnegie’s Scott Sheppard and Chadwick Trujillo of Northern Arizona University have observed several never-before-...
Explore this Story
AudioWashington, D.C.—Comets and meteorites contain clues to our solar system's earliest days. But some of the findings are puzzle pieces that don't seem to fit well together. A new set of...
Explore this Story
NASA’s Curiosity rover has discovered new “tough” organic molecules in three-billion-year-old sedimentary rocks on Mars, increasing the chances that the record of habitability and...
Explore this Story

Explore Carnegie Science

LaPaz Icefield 02342 seen here in thin section under polarized light courtesy of  Carles Moyano-Cambero.
April 15, 2019

Washington, DC—An ancient sliver of the building blocks from which comets formed was discovered encased inside a meteorite like an insect in amber by a Carnegie-led research team. The finding, published by Nature Astronomy, could offer clues to the formation and evolution of our Solar System.

Meteorites were once part of larger bodies, asteroids, which broke up due to collisions in space and survived the trip through the Earth’s atmosphere. Their makeup can vary substantially from meteorite to meteorite, reflecting their varying origin stories in different parent bodies that formed in different parts of the Solar System. Asteroids and comets both formed from the disk

Artist's conception of HD 21749c, the first Earth-sized planet found by NASA's Transiting Exoplanets Survey Satellite (TESS) by Robin Dienel courtesy of Carnegie Institution for Science
April 15, 2019

Pasadena, CA—A nearby system hosts the first Earth-sized planet discovered by NASA’s Transiting Exoplanets Survey Satellite, as well as a warm sub-Neptune-sized world, according to a new paper from a team of astronomers that includes Carnegie’s Johanna Teske, Paul Butler, Steve Shectman, Jeff Crane, and Sharon Wang.

Their work is published in The Astrophysical Journal Letters.

“It’s so exciting that TESS, which launched just about a year ago, is already a game-changer in the planet-hunting business,” said Teske, who is second author on the paper. “The spacecraft surveys the sky and we collaborate with the TESS follow-up

Artist's conception. Credit Rensselaer Polytechnic Institute
February 14, 2019

Washington, DC—Carnegie’s Andrew Steele is a member of the Earth First Origins project, led by Rensselaer Polytechnic Institute’s Karyn Rogers, which has been awarded a $9 million grant by NASA’s Astrobiology Program.

The five-year project seeks to uncover the conditions on early Earth that gave rise to life by identifying, replicating, and exploring how prebiotic molecules and chemical pathways could have formed under realistic early Earth conditions.

The evolution of planet Earth and the emergence of life during its first half-billion years are inextricably linked, with a series of planetwide transformations – formation of the ocean,

Self-portrait of NASA's Curiosity Mars rover on Vera Rubin Ridge with Mount Sharp poking up just behind the vehicle's mast. Image is courtesy of NASA/JPL-Caltech/MSSS Curiosity.
January 31, 2019

Washington, DC—The density of rock layers on the terrain that climbs from the base of Mars’ Gale Crater to Mount Sharp is less dense than expected, according to the latest report on the Red Planet’s geology from a team of scientists including Carnegie’s Shaunna Morrison. Their work is published in Science.

Scientists still aren't sure how this mountain grew inside of the crater, which has been a longstanding mystery. 

One idea is that sediment once filled Gale Crater and was then worn away by millions of years of wind and erosion, excavating the mountain. However, if the crater had been filled to the brim, the material on the bottom, which

April 25, 2019

Gravity, the fundamental force that shaped our planet, varies across the Earth’s surface, both from place to place and over time. For more than three centuries, scientists have made gravity measurements to define the shape of the Earth. Today, very precise measurements of gravity provide crucial information on the mass distribution and transport within the planet. In this talk, Dr. Le Mével will highlight the long history of the determination of the gravity field, from the first field expeditions to the era of satellite measurements, and will discuss the evolution of the instrumentation. She will then show how gravity studies are used to image magmatic systems under

May 23, 2019

In shock-wave experiments, high-powered lasers or guns are used to send a supersonic pressure wave through a sample. This type of dynamic compression can generate immense pressure and allows for the study of impact phenomena in real time. These experiments have wide applications for Earth and planetary science, ranging from understanding the effects of meteorite impacts to studying the structure of planetary interiors. Dynamic experiments are short-lived, generally having a duration of tens of billionths of a second. This requires the development of ultrafast experiments. In this talk, Tracy will review new results using high-intensity pulsed x-rays to examine the crystal structure of

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission to orbit Mercury following three flybys of that planet is a scientific investigation of the planet Mercury. Understanding Mercury, and the forces that have shaped it is fundamental to understanding the terrestrial planets and their evolution. This is the first orbital mission around the innermost planet. It took years of planning and complex trajectory to reach Mercury. Carnegie scientists have led the way revealing results that have redefined what we thought we knew about Mercury and the other rocky planets. For more information see http://messenger.jhuapl.edu/

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar