Simulation of a disk of gas and dust around a young star, courtesy of Alan Boss
Washington, DC—There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions like NASA’s WFIRST space telescope,...
Explore this Story
Washington, DC—Carnegie’s Scott Sheppard and his long-time colleague Chad Trujillo of Northern Arizona University received The Europlanet...
Explore this Story
AGU Logo
Washington, DC— Carnegie scientists Michael Walter and Robert Hazen have been elected 2019 Fellows of the American Geophysical Union. Fellows are recognized for visionary leadership and...
Explore this Story
Telica Volcano in Nicaragua, courtesy of the Carnegie Institution for Science.
Washington, DC—Some volcanoes take their time—experiencing protracted, years-long periods of unrest before eventually erupting. This makes it difficult to forecast when they pose a danger...
Explore this Story
An artist’s illustration courtesy of Carl Sagan Institute/Jack Madden
Pasadena, CA— Sometimes there is more to a planetary system than initially meets the eye.  Ground-based observations following up on the discovery of a small planet by NASA’s...
Explore this Story
A $2.7 million multi-disciplinary, multi-institutional NSF-Frontiers of Earth Science grant has been awarded to a team led by Carnegie’s Lara Wagner to study an active flat slab in Colombia. A...
Explore this Story
The planet Earth on April 17, 2019, courtesy NOAA/NASA EPIC Team.
Washington, DC—The first minerals to form in the universe were nanocrystalline diamonds, which condensed from gases ejected when the first generation of stars exploded. Diamonds that...
Explore this Story
The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a...
Explore this Story

Pages

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep...
Explore this Project
Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new...
Meet this Scientist
Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
You May Also Like...
Washington, D.C.—Although there have been about 800 extra-solar planets discovered so far in our galaxy, the precise masses of the majority of them are still unknown, as the most-common planet-...
Explore this Story
A “cold Neptune” and two potentially habitable worlds are part of a cache of five newly discovered exoplanets and eight exoplanet candidates found orbiting nearby red dwarf stars by a...
Explore this Story
NASA’s Curiosity rover has discovered new “tough” organic molecules in three-billion-year-old sedimentary rocks on Mars, increasing the chances that the record of habitability and...
Explore this Story

Explore Carnegie Science

Rough diamond photograph purchased from iStock
December 21, 2020

Washington, DC— A diamond lasts forever, but that doesn’t mean all diamonds have a common history. 

Some diamonds were formed billions of years ago in space as the carbon-rich atmospheres of dying stars expanded and cooled. In our own planet’s lifetime, high-temperatures and pressures in the mantle produced the diamonds that are familiar to us as gems. 5,000 years ago, a large meteorite that struck a carbon-rich sediment on Earth produced an impact diamond.

Each of these diamonds differs from the others in both composition and genesis, but all are categorized as “diamond” by the authoritative guide to minerals—the International

Islands of Four Mountains, Alaska. USGS Photo by John Lyons.
December 3, 2020

Washington, DC— A small group of volcanic islands in Alaska's Aleutian chain could actually be part of a single, previously unrecognized giant volcano in the same category as Yellowstone, according to work from a research team, including Carnegie’s Diana Roman, Lara Wagner, Hélène Le Mével, and Daniel Portner, as well as recently departed postdoc Helen Janiszewski (now at University of Hawaiʻi at Mānoa), who will present their findings at the American Geophysical Union’s Fall Meeting next week.

The Islands of the Four Mountains in the central Aleutians is a tight group of six volcanos: Carlisle, Cleveland, Herbert, Kagamil, Tana and

Richard Carlson, Director Carnegie Earth and Planets Laboratory
November 24, 2020

Washington, DC— Richard Carlson, Director of Carnegie’s Earth and Planets Laboratory, has been named a Fellow of the American Association for the Advancement of Science. He was selected for his “outstanding research, leadership, innovation, and service to the community in geochemistry and geology.”

The tradition of AAAS Fellows began in 1874 and election for this honor is bestowed upon AAAS members by their peers. This year 489 members have been selected due to their “scientifically or socially distinguished efforts to advance science or its applications.” 

A Carnegie staff member since 1981, Carlson is widely recognized for his use

Saturn image is courtesy of NASA/JPL-Caltech/Space Science Institute.
October 29, 2020

Washington, DC—New work led by Carnegie’s Matt Clement reveals the likely original locations of Saturn and Jupiter. These findings refine our understanding of the forces that determined our Solar System’s unusual architecture, including the ejection of an additional planet between Saturn and Uranus, ensuring that only small, rocky planets, like Earth, formed inward of Jupiter.

In its youth, our Sun was surrounded by a rotating disk of gas and dust from which the planets were born.  The orbits of early formed planets were thought to be initially close-packed and circular, but gravitational interactions between the larger objects perturbed the arrangement and

January 28, 2021

Join us to learn about exoplanet science from Johanna Teske, a former Carnegie postdoc who joined our Earth and Planets Laboratory as a Staff Scientist last September. This is the first virtual program in our winter series of online conversations with several of our exciting investigators.  

Teske’s work aims to help scientists better understand the planetary formation process and explain why there is such tremendous planetary diversity in our galaxy. She uses observational data from the telescopes at Carnegie’s Las Campanas Observatory, as well as from space-based telescopes and other facilities, to estimate the interior and atmospheric

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new techniques to analyze different variants of the same atom—isotopes—in small samples. In related studies, he uses space-based X-ray and gamma-ray instrumentation to determine the composition of planetary surfaces. He was part of the 2000-2001 scientific team to hunt for meteorites in Antarctica.

Nittler is especially interested in presolar grains contained in meteorites and in what

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from

Roiling cauldrons of liquid-laden material flow within Earth’s rocky interior. Understanding how this matter moves and changes is essential to deciphering Earth’s formation and evolution as well as the processes that create seismic activity, such as earthquakes and volcanoes. Bjørn Mysen probes this hidden environment in the laboratory and, based on his results, models can help explain what goes on in this remote realm.

Mysen investigates changes in the atomic properties of molten silicates at high pressures and temperatures that pervade the interior Earth. Silicates comprise most of the Earth's crust and mantle. He uses devices, such as the diamond anvil