Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Jackie Faherty, American Museum of Natural History
Washington, DC— Brown dwarfs are smaller than stars, but more massive than giant planets. As such, they provide a natural link between astronomy and planetary science. However, they also show...
Explore this Story
Washington, DC— New work from Carnegie’s Peter Driscoll suggests Earth’s ancient magnetic field was significantly different than the present day field, originating from several...
Explore this Story
Washington, D.C.— When dormant volcanoes are about to erupt, they show some predictive characteristics—seismic activity beneath the volcano starts to increase, gas escapes through the...
Explore this Story
Don Francis, McGill University, Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Washington, DC— New work from a team including Carnegie’s Hanika Rizo and Richard Carlson, as well as Richard Walker from the University of Maryland, has found material in rock formations...
Explore this Story
Washington, DC— Planet-hunting is an ongoing process that’s resulting in the discovery of more and more planets orbiting distant stars. But as the hunters learn more about the variety...
Explore this Story
Washington, DC—A team of astronomers from Carnegie and Western University in Ontario, Canada, has discovered one of the youngest and brightest free-floating, planet-like objects within...
Explore this Story
Washington, D.C.—Scientists have long been puzzled about what makes Mercury’s surface so dark. The innermost planet reflects much less sunlight than the Moon, a body on which surface...
Explore this Story
Washington, DC— A team of scientists including Carnegie’s Dina Bower and Andrew Steele weigh in on whether microstructures found in 3.46 billion-year-old samples of a silica-rich rock...
Explore this Story

Pages

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the...
Explore this Project
Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep...
Explore this Project
Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of...
Explore this Project
Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s...
Meet this Scientist
Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
You May Also Like...
Erik Hauri, who studies how planetary processes affect the chemistry of the Earth, Moon and other objects, was made a fellow of both the Geochemical Society and European Association of Geochemistry.
Explore this Story
The Moon formed when an object collided with the proto-Earth. For years, scientists thought that in the aftermath, hydrogen and other so-called “volatile elements” escaped and were lost...
Explore this Story
Washington, D.C.—The Solar System has a new most-distant member, bringing its outer frontier into focus. New work from Carnegie's Scott Sheppard and Chadwick Trujillo of the Gemini Observatory...
Explore this Story

Explore Carnegie Science

Artist’s conception of Kepler-432b, courtesy of MarioProtIV/Wikimedia Commons.
December 3, 2019

Pasadena, CA— A surprising analysis of the composition  of gas giant exoplanets and their host stars shows that there isn’t a strong correlation between their compositions when it comes to elements heavier than hydrogen and helium, according to new work led by Carnegie’s Johanna Teske and published in The Astronomical Journal. This finding has important implications for our understanding of the planetary formation process. 

In their youths, stars are surrounded by a rotating disk of gas and dust from which planets are born. Astronomers have long wondered how much a star’s makeup determines the raw material from which planets are constructed—

Artist's conception by Robin Dienel, courtesy of the Carnegie Institution for Sc
October 16, 2019

Washington, DC— What does a gestating baby planet look like? New research in Nature by a team including Carnegie’s Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.

In their youth, stars are surrounded by a rotating disk of gas and dust from which planets are born. Studying the behavior of the material that makes up these disks can reveal new details about planet formation, and about the evolution of a planetary system as a whole.

The disk around a young star called HD 163296 is known to include several rings and gaps. Using 3-D visualizations taken by the Atacama Large

Saturn image is courtesy of NASA/JPL-Caltech/Space Science Institute.
October 7, 2019

Washington, DC—Move over Jupiter; Saturn is the new moon king.

A team led by Carnegie's Scott S. Sheppard has found 20 new moons orbiting Saturn.  This brings the ringed planet’s total number of moons to 82, surpassing Jupiter, which has 79. The discovery was announced Monday by the International Astronomical Union’s Minor Planet Center.

Each of the newly discovered moons is about five kilometers, or three miles, in diameter. Seventeen of them orbit the planet backwards, or in a retrograde direction, meaning their movement is opposite of the planet's rotation around its axis. The other three moons orbit in the prograde—the same direction

Simulation of a disk of gas and dust around a young star, courtesy of Alan Boss
September 27, 2019

Washington, DC—There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions like NASA’s WFIRST space telescope, according to new models of gas giant planet formation by Carnegie’s Alan Boss described in an upcoming publication in The Astrophysical Journal.  His models are supported by a new Science paper on the surprising discovery of a gas giant planet orbiting a low-mass star.

“Astronomers have struck a bonanza in searching for and detecting exoplanets of every size and stripe since the first confirmed exoplanet, a hot Jupiter, was discovered in 1995,” Boss explained.

No content in this section.

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 - 2003, CAN 3 from 2003 - 2008, and CAN 5 from 2009 - 2015. The Carnegie team focused on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich primitive planetary bodies, prebiotic molecular synthesis through catalyzing with

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental crust.

  Most all of the chemical diversity in the universe comes from the nuclear reactions inside stars, in a process called nucleosynthesis. To answer his questions, Carlson developes novel procedures using instruments called mass spectrometers to make precise measurements of isotopes--atoms of an element with different numbers of neutrons--of Chromium (Cr), strontium (Sr),

Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that measure tiny strains the Earth undergoes.

Strainmeter data has led to the discovery of events referred to as slow earthquakes that are similar to regular earthquakes except that the fault motions take place over much longer time scales. These were first detected in south-east Japan and have since been seen in a number of different environments including the San Andreas Fault in California and