Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA/JPL-Caltech
Washington, DC— New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Alan Boss
Washington, DC— According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the exploding star...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, RRUFF
Washington, DC—Applying big data analysis to mineralogy offers a way to predict minerals missing from those known to science, as well as where to find new deposits, according to a groundbreaking...
Explore this Story
Several of our geochemistry, cosmochemistry, and astrobiology experts at Carnegie's Department of Terrestrial Magnetism and Geophysical Laboratory study the Moon—how it formed and the source of its...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Diana Roman’s job sounds like a blast. Pun very much intended. Although many people find volcanoes scary, she knows how to make them fun and, more importantly, fascinating. A staff scientist at...
Explore this Story
Washington, DC— Sometimes a brown dwarf is actually a planet—or planet-like anyway. A team led by Carnegie’s Jonathan Gagné, and including researchers from the Institute for Research on Exoplanets (...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—Rock samples from northeastern Canada retain chemical signals that help explain what Earth’s crust was like more than 4 billion years ago, reveals new work from Carnegie’s Richard...
Explore this Story
Washington, DC—When planets first begin to form, the aftermath of the process leaves a ring of rocky and icy material that’s rotating and colliding around the young central star like a celestial...
Explore this Story

Pages

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young....
Explore this Project
The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of...
Explore this Project
Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics of the area and shape of...
Meet this Scientist
Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental...
Meet this Scientist
Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life...
Meet this Scientist
You May Also Like...
AudioWashington, D.C.—Water was crucial to the rise of life on Earth and is also important to evaluating the possibility of life on other planets. Identifying the original source of Earth’s water is...
Explore this Story
New work from an international team of researchers including Carnegie’s Lara Wagner improves our understanding of the geological activity that is thought to have formed the Rocky Mountains. It is...
Explore this Story
Washington, D.C.—The Solar System has a new most-distant member, bringing its outer frontier into focus. New work from Carnegie's Scott Sheppard and Chadwick Trujillo of the Gemini Observatory...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA/JPL-Caltech
September 5, 2017

Washington, DC— New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of the star’s seven known planets. If gas giant planets are found in this system’s outer edges, it could help scientists understand how our own Solar System’s gas giants like Jupiter and Saturn formed.

Earlier this year, NASA’s Spitzer Space Telescope thrilled the world as it revealed that TRAPPIST-1, an ultra-cool dwarf star in the Aquarius constellation, was the first-known system of seven Earth-sized planets orbiting a single star. Three of these planets are in the so-called habitable zone—

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Alan Boss
August 3, 2017

Washington, DC— According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the exploding star into a neighboring cloud of dust and gas, causing it to collapse in on itself and form the Sun and its surrounding planets.

New work from Carnegie’s Alan Boss offers fresh evidence supporting this theory, modeling the Solar System’s formation beyond the initial cloud collapse and into the intermediate stages of star formation. It is published by The Astrophysical Journal.

One very important constraint for testing theories of Solar System formation is meteorite chemistry.

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, RRUFF
August 1, 2017

Washington, DC—Applying big data analysis to mineralogy offers a way to predict minerals missing from those known to science, as well as where to find new deposits, according to a groundbreaking study.

In a paper published by American Mineralogist, scientists report the first application to mineralogy of network theory (best known for analysis of e.g. the spread of disease, terrorist networks, or Facebook connections).

The results, they say, pioneer a potential way to reveal mineral diversity and distribution worldwide, their evolution through deep time, new trends, and new deposits of valuable minerals such as gold or copper.

Led by Shaunna Morrison of the Deep

July 20, 2017

Several of our geochemistry, cosmochemistry, and astrobiology experts at Carnegie's Department of Terrestrial Magnetism and Geophysical Laboratory study the Moon—how it formed and the source of its water and minerals. For Moon day, we're taking a look back at some of our favorite Carnegie Moon news from the past few years. Take a look! 

Research may solve lunar fire fountain mystery

Tiny beads of volcanic glass found on the lunar surface during the Apollo missions are a sign that fire fountain eruptions took place on the Moon’s surface. Now, scientists from Brown University and the Carnegie Institution for Science have identified the volatile gas that drove those eruptions.   MORE

No content in this section.

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist. Image

Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's ancient geodynamic processes.

Shirey’s past, current, and future studies reflect the diversity of continental rocks, encompassing a range of studies that include rocks formed anywhere from the deep mantle to the surface crust. His work spans a wide range of geologic settings such as volcanic rocks in continental rifts (giant crustal breaks where continents split apart), ancient and present subduction zones

Volcanologist Diana Roman is interested in the mechanics of how magma moves through the Earth’s crust, and in the structure, evolution, and dynamics of volcanic conduit systems. Her ultimate goal is to understand the likelihood and timing of volcanic eruptions.

Most of Roman’s research focuses on understanding changes in seismicity and stress in response to the migration of magma through volcanic conduits, and on developing techniques and strategies for monitoring active or restless volcanoes through the analysis of high-frequency volcanic seismicity.

Roman is also interested in understanding the seismicity at quiet volcanoes, tectonic and hidden volcanic microearthquake

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from mantle–core differentiation,