Carnegie Science, Carnegie Institution, Carnegie Institution for Science, courtesy of NASA/JPL, slightly modified by Jonathan Gagné.
Washington, DC— Brown dwarfs, the larger cousins of giant planets, undergo atmospheric changes from cloudy to cloudless as they age and cool. A team of astronomers led by Carnegie’s...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Smithsonian Institution, Colin Jackson
Washington, DC— Plumes of hot rock surging upward from the Earth’s mantle at volcanic hotspots contain evidence that the Earth’s formative years may have been even more chaotic than...
Explore this Story
Many people have heard of Pangaea, the supercontinent that included all continents on Earth and began to break up about 175 million years ago. But before Pangaea, Earth’s landmasses ripped...
Explore this Story
Postdoctoral researcher at the Department of Terrestrial Magnetism (DTM), Miki Nakajima, has been awarded the eighth Postdoctoral Innovation and Excellence Award (PIE). These prizes are made through...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA/JPL-Caltech
Washington, DC— New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Alan Boss
Washington, DC— According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, RRUFF
Washington, DC—Applying big data analysis to mineralogy offers a way to predict minerals missing from those known to science, as well as where to find new deposits, according to a...
Explore this Story
Several of our geochemistry, cosmochemistry, and astrobiology experts at Carnegie's Department of Terrestrial Magnetism and Geophysical Laboratory study the Moon—how it formed and the...
Explore this Story

Pages

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 -...
Explore this Project
Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life...
Meet this Scientist
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
You May Also Like...
Every school child learns about the water cycle—evaporation, condensation, precipitation, and collection. But what if there were a deep Earth component of this process happening on geologic...
Explore this Story
Applying big data analysis to mineralogy offers a way to predict undiscovered minerals, as well as where to find new deposits, according to a groundbreaking study from Carnegie's Robert Hazen and...
Explore this Story
An ancient sliver of the building blocks from which comets formed was discovered encased inside a meteorite like an insect in amber by a Carnegie-led research team. The finding, published by ...
Explore this Story

Explore Carnegie Science

Rough diamond photograph purchased from iStock
December 21, 2020

Washington, DC— A diamond lasts forever, but that doesn’t mean all diamonds have a common history. 

Some diamonds were formed billions of years ago in space as the carbon-rich atmospheres of dying stars expanded and cooled. In our own planet’s lifetime, high-temperatures and pressures in the mantle produced the diamonds that are familiar to us as gems. 5,000 years ago, a large meteorite that struck a carbon-rich sediment on Earth produced an impact diamond.

Each of these diamonds differs from the others in both composition and genesis, but all are categorized as “diamond” by the authoritative guide to minerals—the International

Islands of Four Mountains, Alaska. USGS Photo by John Lyons.
December 3, 2020

Washington, DC— A small group of volcanic islands in Alaska's Aleutian chain could actually be part of a single, previously unrecognized giant volcano in the same category as Yellowstone, according to work from a research team, including Carnegie’s Diana Roman, Lara Wagner, Hélène Le Mével, and Daniel Portner, as well as recently departed postdoc Helen Janiszewski (now at University of Hawaiʻi at Mānoa), who will present their findings at the American Geophysical Union’s Fall Meeting next week.

The Islands of the Four Mountains in the central Aleutians is a tight group of six volcanos: Carlisle, Cleveland, Herbert, Kagamil, Tana and

Richard Carlson, Director Carnegie Earth and Planets Laboratory
November 24, 2020

Washington, DC— Richard Carlson, Director of Carnegie’s Earth and Planets Laboratory, has been named a Fellow of the American Association for the Advancement of Science. He was selected for his “outstanding research, leadership, innovation, and service to the community in geochemistry and geology.”

The tradition of AAAS Fellows began in 1874 and election for this honor is bestowed upon AAAS members by their peers. This year 489 members have been selected due to their “scientifically or socially distinguished efforts to advance science or its applications.” 

A Carnegie staff member since 1981, Carlson is widely recognized for his use

Saturn image is courtesy of NASA/JPL-Caltech/Space Science Institute.
October 29, 2020

Washington, DC—New work led by Carnegie’s Matt Clement reveals the likely original locations of Saturn and Jupiter. These findings refine our understanding of the forces that determined our Solar System’s unusual architecture, including the ejection of an additional planet between Saturn and Uranus, ensuring that only small, rocky planets, like Earth, formed inward of Jupiter.

In its youth, our Sun was surrounded by a rotating disk of gas and dust from which the planets were born.  The orbits of early formed planets were thought to be initially close-packed and circular, but gravitational interactions between the larger objects perturbed the arrangement and

January 28, 2021

Join us to learn about exoplanet science from Johanna Teske, a former Carnegie postdoc who joined our Earth and Planets Laboratory as a Staff Scientist last September. This is the first virtual program in our winter series of online conversations with several of our exciting investigators.  

Teske’s work aims to help scientists better understand the planetary formation process and explain why there is such tremendous planetary diversity in our galaxy. She uses observational data from the telescopes at Carnegie’s Las Campanas Observatory, as well as from space-based telescopes and other facilities, to estimate the interior and atmospheric

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new techniques to analyze different variants of the same atom—isotopes—in small samples. In related studies, he uses space-based X-ray and gamma-ray instrumentation to determine the composition of planetary surfaces. He was part of the 2000-2001 scientific team to hunt for meteorites in Antarctica.

Nittler is especially interested in presolar grains contained in meteorites and in what

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-

Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that measure tiny strains the Earth undergoes.

Strainmeter data has led to the discovery of events referred to as slow earthquakes that are similar to regular earthquakes except that the fault motions take place over much longer time scales. These were first detected in south-east Japan and have since been seen in a number of different environments including the San Andreas Fault in California and