The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a...
Explore this Story
Artist’s impression of the surface of the planet Proxima b courtesy of ESO/M. Kornmesser.
Washington, DC—Which of Earth’s features were essential for the origin and sustenance of life? And how do scientists identify those features on other worlds? A team of Carnegie ...
Explore this Story
Images of diamonds from Sierra Leone with sulfur-containing mineral inclusions courtesy of the Gemological Institute of America
Washington, DC— The longevity of Earth’s continents in the face of destructive tectonic activity is an essential geologic backdrop for the emergence of life on our planet. This stability...
Explore this Story
LaPaz Icefield 02342 seen here in thin section under polarized light courtesy of  Carles Moyano-Cambero.
Washington, DC—An ancient sliver of the building blocks from which comets formed was discovered encased inside a meteorite like an insect in amber by a Carnegie-led research team. The finding,...
Explore this Story
Artist's conception of HD 21749c, the first Earth-sized planet found by NASA's Transiting Exoplanets Survey Satellite (TESS) by Robin Dienel courtesy of Carnegie Institution for Science
Pasadena, CA—A nearby system hosts the first Earth-sized planet discovered by NASA’s Transiting Exoplanets Survey Satellite, as well as a warm sub-Neptune-sized world, according to a new...
Explore this Story
Artist's conception. Credit Rensselaer Polytechnic Institute
Washington, DC—Carnegie’s Andrew Steele is a member of the Earth First Origins project, led by Rensselaer Polytechnic Institute’s Karyn Rogers, which has been awarded a $9 million...
Explore this Story
Self-portrait of NASA's Curiosity Mars rover on Vera Rubin Ridge with Mount Sharp poking up just behind the vehicle's mast. Image is courtesy of NASA/JPL-Caltech/MSSS Curiosity.
Washington, DC—The density of rock layers on the terrain that climbs from the base of Mars’ Gale Crater to Mount Sharp is less dense than expected, according to the latest report on the...
Explore this Story
Artist concept of 2018 VG18, nicknamed "Farout.” Illustration by Roberto Molar Candanosa is courtesy of the Carnegie Institution for Science.
Washington, DC— A team of astronomers has discovered the most-distant body ever observed in our Solar System.  It is the first known Solar System object that has been detected at a...
Explore this Story

Pages

CALL FOR PROPOSALS Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas. Carnegie Science Venture grants are internal awards of up to $100,000 that are...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the...
Explore this Project
Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that...
Meet this Scientist
Volcanologist Diana Roman is interested in the mechanics of how magma moves through the Earth’s crust, and in the structure, evolution, and dynamics of volcanic conduit systems. Her ultimate goal is to understand the likelihood and timing of volcanic eruptions. Most of Roman’s research...
Meet this Scientist
Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates...
Meet this Scientist
You May Also Like...
Washington, D.C.—After extensive analyses by a team of scientists led by Carl Agee at the University of New Mexico, researchers have identified a new class of Martian meteorite that likely originated...
Explore this Story
Washington, DC — A team of scientists, including Carnegie's Conel Alexander and Jianhua Wang, studied the hydrogen in water from the Martian interior and found that Mars formed from similar building...
Explore this Story
Washington, D.C.—Hydrocarbons from the Earth make up the oil and gas that heat our homes and fuel our cars. The study of the various phases of molecules formed from carbon and hydrogen under high...
Explore this Story

Explore Carnegie Science

Saturn image is courtesy of NASA/JPL-Caltech/Space Science Institute.
October 7, 2019

Washington, DC—Move over Jupiter; Saturn is the new moon king.

A team led by Carnegie's Scott S. Sheppard has found 20 new moons orbiting Saturn.  This brings the ringed planet’s total number of moons to 82, surpassing Jupiter, which has 79. The discovery was announced Monday by the International Astronomical Union’s Minor Planet Center.

Each of the newly discovered moons is about five kilometers, or three miles, in diameter. Seventeen of them orbit the planet backwards, or in a retrograde direction, meaning their movement is opposite of the planet's rotation around its axis. The other three moons orbit in the prograde—the same direction

Simulation of a disk of gas and dust around a young star, courtesy of Alan Boss
September 27, 2019

Washington, DC—There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions like NASA’s WFIRST space telescope, according to new models of gas giant planet formation by Carnegie’s Alan Boss described in an upcoming publication in The Astrophysical Journal.  His models are supported by a new Science paper on the surprising discovery of a gas giant planet orbiting a low-mass star.

“Astronomers have struck a bonanza in searching for and detecting exoplanets of every size and stripe since the first confirmed exoplanet, a hot Jupiter, was discovered in 1995,” Boss explained.

September 18, 2019

Washington, DC—Carnegie’s Scott Sheppard and his long-time colleague Chad Trujillo of Northern Arizona University received The Europlanet Society’s 2019 Paolo Farinella Prize for “outstanding collaborative work for the observational characterization of the Kuiper belt and the Neptune-trojan population.” 

The prize was established in 2010 in honor of Italian scientist whose name it bears and the winners must be excellent investigators who are no older than 47, which was Farinella’s age when he died, and who have achieved important results in one of his research areas. Each year the Prize focuses on a different one of these topics and in 2019

AGU Logo
August 19, 2019

Washington, DC— Carnegie scientists Michael Walter and Robert Hazen have been elected 2019 Fellows of the American Geophysical Union.

Fellows are recognized for visionary leadership and scientific excellence that has fundamentally advanced research in the Earth and space sciences. “Their breadth of interests and the scope of their contributions are remarkable and often groundbreaking,” said the organization in its announcement of the new class.  

The Director of Carnegie’s Geophysical Laboratory, Walter is an experimental petrologist whose research focuses on early Earth’s history, shortly after the planet accreted from the cloud of gas

No content in this section.

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young. None of the accepted paradigms explain why the magmatic and tectonic activity extend so far east of the North American plate margin. By applying numerous techniques ranging from geochemistry and petrology to active and passive seismic imaging to geodynamic modeling, the researchers examine an assemblage of new data that will provide key information about the roles of lithosphere

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-

Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental crust.

  Most all of the chemical diversity in the universe comes from the nuclear reactions inside stars, in a process called nucleosynthesis. To answer his questions, Carlson developes novel procedures using instruments called mass spectrometers to make precise measurements of isotopes--atoms of an element with different numbers of neutrons--of Chromium (Cr), strontium (Sr),

Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar