Washington, DC— NASA’s Curiosity rover has discovered new “tough” organic molecules in three-billion-year-old sedimentary rocks on Mars, increasing the chances that the record...
Explore this Story
Washington, DC—A team of researchers including Carnegie’s Bob Hazen is using network analysis techniques—made popular through social media applications—to find patterns in...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Bradley Peters
Washington, DC—Plumes of hot magma from the volcanic hotspot that formed Réunion Island in the Indian Ocean rise from an unusually primitive source deep beneath the Earth’s surface...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Miki Nakajima and Dave Stevenson
Washington, DC—It’s amazing what a difference a little water can make. The Moon formed between about 4.4 and 4.5 billion years ago when an object collided with the still-forming proto-...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, courtesy of NASA/JPL, slightly modified by Jonathan Gagné.
Washington, DC— Brown dwarfs, the larger cousins of giant planets, undergo atmospheric changes from cloudy to cloudless as they age and cool. A team of astronomers led by Carnegie’s...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Smithsonian Institution, Colin Jackson
Washington, DC— Plumes of hot rock surging upward from the Earth’s mantle at volcanic hotspots contain evidence that the Earth’s formative years may have been even more chaotic than...
Explore this Story
Many people have heard of Pangaea, the supercontinent that included all continents on Earth and began to break up about 175 million years ago. But before Pangaea, Earth’s landmasses ripped...
Explore this Story

Pages

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep...
Explore this Project
Volcanologist Diana Roman is interested in the mechanics of how magma moves through the Earth’s crust, and in the structure, evolution, and dynamics of volcanic conduit systems. Her ultimate goal is to understand the likelihood and timing of volcanic eruptions. Most of Roman’s research...
Meet this Scientist
Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in...
Meet this Scientist
Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics...
Meet this Scientist
You May Also Like...
Washington, DC —Scientists have long believed that comets and, or a type of very primitive meteorite called carbonaceous chondrites were the sources of early Earth's volatile elements—which include...
Explore this Story
AudioWashington, D.C.— Reconstructing the rise of life during the period of Earth’s history when it first evolved is challenging. Earth’s oldest sedimentary rocks are not only rare, but also almost...
Explore this Story
Washington, DC— New work from Carnegie’s Peter Driscoll suggests Earth’s ancient magnetic field was significantly different than the present day field, originating from several poles rather than the...
Explore this Story

Explore Carnegie Science

Telica Volcano in Nicaragua, courtesy of the Carnegie Institution for Science.
August 6, 2019

Washington, DC—Some volcanoes take their time—experiencing protracted, years-long periods of unrest before eventually erupting. This makes it difficult to forecast when they pose a danger to their surrounding areas, but Carnegie’s Diana Roman and Penn State’s Peter LaFemina are trying to change that.

“Dormancy, brief unrest, eruption—this is a familiar pattern for many volcanoes, and for many parents,” joked Roman. “But for some volcanoes the unrest is anything but brief—potentially lasting for decades.”

It turns out that these so-called “persistently restless volcanoes” experience three different

An artist’s illustration courtesy of Carl Sagan Institute/Jack Madden
July 31, 2019

Pasadena, CA— Sometimes there is more to a planetary system than initially meets the eye. 

Ground-based observations following up on the discovery of a small planet by NASA’s Transiting Exoplanet Survey Satellite (TESS) revealed two additional planets in the same system, one of which is located far enough from its star to be potentially habitable.  These findings were announced in Astronomy & Astrophysics by an international team that included several Carnegie astronomers and instrumentation specialists.

The newly found exoplanets orbit a star named GJ 357, an M-type dwarf that’s about one-third of the Sun’s mass and located 31

July 15, 2019

A $2.7 million multi-disciplinary, multi-institutional NSF-Frontiers of Earth Science grant has been awarded to a team led by Carnegie’s Lara Wagner to study an active flat slab in Colombia. A flat slab is produced when a tectonic plate descends to depths of about 30 to 60 miles (~50-100 km) then flattens and travels horizontally for hundreds of miles before descending farther into Earth’s mantle. Flat slabs are unlike standard subduction, in which a tectonic plate descends more steeply beneath another plate directly into the Earth. 

Because flat slabs travel horizontally directly beneath the overriding continents for hundreds of miles, they have more extensive

The planet Earth on April 17, 2019, courtesy NOAA/NASA EPIC Team.
June 3, 2019

Washington, DC—The first minerals to form in the universe were nanocrystalline diamonds, which condensed from gases ejected when the first generation of stars exploded. Diamonds that crystallize under the extreme pressure and temperature conditions deep inside of Earth are more typically encountered by humanity. What opportunities for knowledge are lost when mineralogists categorize both the cosmic travelers and the denizens of deep Earth as being simply “diamond”?

Could a new classification system that accounts for minerals’ distinct journeys help us better understand mineralogy as a process of universal and planetary evolution?

The current system

No content in this section.

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our Solar System, which allow us to understand how the Solar System came to be.

The major planets in our Solar System travel around the Sun in fairly circular orbits and on similar planes. However, since the discovery of wildly varying planetary systems around other stars, and given our increased understanding about small, primordial bodies in our celestial neighborhood, the notion that

Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas giant and ice giant protoplanets. His observational works centers on the Carnegie Astrometric Planet Search project, which has been underway for the last decade at Carnegie's Las Campanas Observatory in Chile.

While fragmentation is universally recognized as the dominant formation mechanism for binary and multiple stars, there are still major questions. The most important of these

Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new techniques to analyze different variants of the same atom—isotopes—in small samples. In related studies, he uses space-based X-ray and gamma-ray instrumentation to determine the composition of planetary surfaces. He was part of the 2000-2001 scientific team to hunt for meteorites in Antarctica.

Nittler is especially interested in presolar grains contained in meteorites and in what