Erik Hauri in the lab at Carnegie's Department of Terrestrial Magnetism
Washington, DC—Carnegie geochemist Erik Hauri, whose work upended our understanding of the Moon’s formation and the importance of water in Earth’s interior, died Wednesday in North...
Explore this Story
Visualization rendered by Dan Tell from the California Academy of Sciences using SCISS Uniview software and directed/written by Jackie Faherty from the American Museum of Natural History.
Washington, DC—New work from Carnegie’s Jonathan Gagné and the American Museum of Natural History’s Jacqueline Faherty identified nearly a thousand potential members and 31...
Explore this Story
: A blue, boron-bearing diamond with dark inclusions of a mineral called ferropericlase, which were examined as part of this study.  This gem weighs 0.03 carats.  Photo by Evan Smith/GIA.
Washington, DC—Blue diamonds—like the world-famous Hope Diamond at the National Museum of Natural History—formed up to four times deeper in the Earth’s mantle than most other...
Explore this Story
An illustration showing how the orbits of the newly discovered moons (bold) fit into the known orbital groupings of the Jovian moons (not bold). The "oddball" with the proposed name Valetudo orbits in the prograde, but crosses the orbits of the planet's o
Washington, DC—Twelve new moons orbiting Jupiter have been found—11 “normal” outer moons, and one that they’re calling an “oddball.”  This brings...
Explore this Story
Washington, DC—A team of scientists including Carnegie’s Michael Ackerson and Bjørn Mysen revealed that granites from Yosemite National Park contain minerals that crystallized at...
Explore this Story
Washington, DC—New work from an international team of astronomers including Carnegie’s Jaehan Bae used archival radio telescope data to develop a new method for finding very young...
Explore this Story
Washington, DC— NASA’s Curiosity rover has discovered new “tough” organic molecules in three-billion-year-old sedimentary rocks on Mars, increasing the chances that the record...
Explore this Story

Pages

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 -...
Explore this Project
What sets George Cody apart from other geochemists is his pioneering use of sophisticated techniques such as enormous facilities for synchrotron radiation, and sample analysis with nuclear magnetic resonance (NMR) spectroscopy to characterize hydrocarbons. Today, Cody  applies these techniques...
Meet this Scientist
Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that...
Meet this Scientist
Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas...
Meet this Scientist
You May Also Like...
Audio Washington, D.C.—New global imaging and topographic data from MESSENGER* show that the innermost planet has contracted far more than previous estimates. The results are based on a global study...
Explore this Story
“I think there are definitely things out there bigger than Pluto that are yet to be discovered,” Scott Sheppard talks to The Washington Post about the possibility of an undiscovered outer...
Explore this Story
Washington, DC—The interiors of several of our Solar System’s planets and moons are icy, and ice has been found on distant extrasolar planets, as well.  But these bodies aren’t filled with the...
Explore this Story

Explore Carnegie Science

Image Credit: NASA, ESA, JPL, SSI, Cassini Imaging Team
December 9, 2019

Washington, DC— Saturn’s icy moon Enceladus is of great interest to scientists due to its subsurface ocean, making it a prime target for those searching for life elsewhere. New research led by Carnegie’s Doug Hemingway reveals the physics governing the fissures through which ocean water erupts from the moon’s icy surface, giving its south pole an unusual “tiger stripe” appearance.

“First seen by the Cassini mission to Saturn, these stripes are like nothing else known in our Solar System,” lead author Hemingway explained. “They are parallel and evenly spaced, about 130 kilometers long and 35 kilometers apart. What makes them

Artist’s conception of Kepler-432b, courtesy of MarioProtIV/Wikimedia Commons.
December 3, 2019

Pasadena, CA— A surprising analysis of the composition  of gas giant exoplanets and their host stars shows that there isn’t a strong correlation between their compositions when it comes to elements heavier than hydrogen and helium, according to new work led by Carnegie’s Johanna Teske and published in The Astronomical Journal. This finding has important implications for our understanding of the planetary formation process. 

In their youths, stars are surrounded by a rotating disk of gas and dust from which planets are born. Astronomers have long wondered how much a star’s makeup determines the raw material from which planets are constructed—

Artist's conception by Robin Dienel, courtesy of the Carnegie Institution for Sc
October 16, 2019

Washington, DC— What does a gestating baby planet look like? New research in Nature by a team including Carnegie’s Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.

In their youth, stars are surrounded by a rotating disk of gas and dust from which planets are born. Studying the behavior of the material that makes up these disks can reveal new details about planet formation, and about the evolution of a planetary system as a whole.

The disk around a young star called HD 163296 is known to include several rings and gaps. Using 3-D visualizations taken by the Atacama Large

Saturn image is courtesy of NASA/JPL-Caltech/Space Science Institute.
October 7, 2019

Washington, DC—Move over Jupiter; Saturn is the new moon king.

A team led by Carnegie's Scott S. Sheppard has found 20 new moons orbiting Saturn.  This brings the ringed planet’s total number of moons to 82, surpassing Jupiter, which has 79. The discovery was announced Monday by the International Astronomical Union’s Minor Planet Center.

Each of the newly discovered moons is about five kilometers, or three miles, in diameter. Seventeen of them orbit the planet backwards, or in a retrograde direction, meaning their movement is opposite of the planet's rotation around its axis. The other three moons orbit in the prograde—the same direction

No content in this section.

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 - 2003, CAN 3 from 2003 - 2008, and CAN 5 from 2009 - 2015. The Carnegie team focused on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich primitive planetary bodies, prebiotic molecular synthesis through catalyzing with

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-

Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes—atomic variants of elements with the same number of protons but different numbers of neutrons. Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or fingerprints, of the oxygen isotopes 16O, 17O, and 18O. Weathering, ground water, and direct deposition of atmospheric aerosols change the ratios of the isotopes in a rock revealing a lot about the past climate.

Douglas Rumble’s research is centered on these three stable isotopes of oxygen and the four stable isotopes of sulfur 32S , 33S , 34S, and 36S. In addition to

Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar