Tasuku Honjo, a postdoctoral fellow in the Brown Lab at the Department of Embryology 1971-1973, shares the 2018 Nobel Prize in Physiology or Medicine. The ...
Explore this Story
Baltimore, MD— Body organs such as the intestine and ovaries undergo structural changes in response to dietary nutrients that can have lasting impacts on metabolism, as well as cancer...
Explore this Story
Ethan Greenblatt, a senior postdoctoral associate in Allan Spradling’s lab at the Department of Embryology, has been awarded the eleventh Postdoctoral Innovation and Excellence Award....
Explore this Story
Baltimore, MD—The Pew Charitable Trust has awarded Carnegie’s Steve Farber and colleague John F. Rawls of Duke University a $200,000 grant to investigate how dietary nutrients, such as...
Explore this Story
This image shows an example of defects in the development of the embryonic central nervous system in stored eggs that lacked the Fmr1 gene.
Baltimore, MD—New work from Carnegie’s Ethan Greenblatt and Allan Spradling reveals that the genetic factors underlying fragile X syndrome, and potentially other autism-related disorders...
Explore this Story
Baltimore MD—Almost half of our DNA sequences are made up of jumping genes—also known as transposons. They jump around the genome in developing sperm and egg cells and are important to...
Explore this Story
Baltimore, MD—A tremendous amount of genetic material must be packed into the nucleus of every cell—a tiny compartment. One of the biggest challenges in biology is to understand how...
Explore this Story
Baltimore, MD—Allan C. Spradling, Director Emeritus of Carnegie’s Department of Embryology, has been awarded the 23rd March of Dimes and Richard B. Johnson, Jr., MD Prize in...
Explore this Story

Pages

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH action, the Donald Brown lab studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a...
Explore this Project
The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and...
Explore this Project
The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology...
Meet this Scientist
The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing...
Meet this Scientist
Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells...
Meet this Scientist
You May Also Like...
Almost half of our DNA is made up of jumping genes, moving around the genome in developing sperm and egg cells. Given their ability to jump around the genome, their invasion can trigger DNA...
Explore this Story
Meredith Wilson, a postdoctoral associate in Steve Farber’s lab at the Department of Embryology, has been awarded Carnegie’s thirteenth Postdoctoral Innovation and Excellence Award. These...
Explore this Story
Baltimore, MD — In mammals, most lipids (such as fatty acids and cholesterol) are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make...
Explore this Story

Explore Carnegie Science

One analogy for understanding the mathematical structure of the team's work is to think of it as foam being simplified into a single bubble by progressively merging adjacent bubbles.
July 2, 2019

Baltimore, MD—How do the communities of microbes living in our gastrointestinal systems affect our health? Carnegie’s Will Ludington was part of a team that helped answer this question.

For nearly a century, evolutionary biologists have probed how genes encode an individual’s chances for success—or fitness—in a specific environment.

In order to reveal a potential evolutionary trajectory biologists measure the interactions between genes to see which combinations are most fit.  An organism that is evolving should take the most fit path. This concept is called a fitness landscape, and various mathematical techniques have been developed to

June 17, 2019

Meredith Wilson, a postdoctoral associate in Steve Farber’s lab at the Department of Embryology, has been awarded Carnegie’s thirteenth Postdoctoral Innovation and Excellence Award. These prizes are given to postdocs for their exceptionally creative approaches to science, strong mentoring, and contributing to the sense of campus community. The nominations are made by the departments and are chosen by the Office of the President. The recipients receive a cash prize and are celebrated at an event at their departments.  

Wilson came to Carnegie in 2014 from the University of Pennsylvania with a background in cell biology investigating how motor proteins position

Illustration of a thymus in a human chest courtesy of Navid Marvi.
May 29, 2019

Washington, DC—Aging-related inflammation can drive the decline of a critical structural protein called lamin-B1, which contributes to diminished immune function in the thymus, according to research from Carnegie’s Sibiao Yue, Xiaobin Zheng, and Yixian Zheng published in Aging Cell.

Each of our cells is undergirded by a protein-based cellular skeleton. And each of our tissues is likewise supported by a protein matrix holding the cells that comprise it together. These protein scaffolds or structures are necessary for organs and tissues to be constructed during development.

“Since organ building and maintenance require this protein-based structural support

Steve Farber photo by Navid Marvi, courtesy of the Carnegie Institution for Science
May 1, 2019

Baltimore, MD—This week Carnegie’s Steve Farber will be recognized by New England Biolabs Inc. with its Passion in Science Award in the category of Mentorship and Advocacy. The company, which supplies research tools for sequencing, synthetic biology, and cellular and molecular research, launched the prize in 2014.  

The 12 honorees were chosen for their “innovative work that goes above and beyond the boundaries of pure science to make a profound impact on other fields.”

In announcing the 2019 class, CEO Jim Ellard described them as individuals “who are enriching lives in ways that go well beyond the traditional definition of success for a

No content in this section.

The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH action, the Donald Brown lab studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis, from South Africa, because it is easy to rear. Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH. How can a simple molecule control so many different developmental changes? The hormone works by regulating the expression of groups of

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30,000 human genes, 98% of DNA sequences are comprised of repetitive and regulatory sequences within and between genes. Measuring the specific set of DNA sequences that are transcribed into RNA helps reveal what and how our tissues are doing by showing which genes are active.

Modern sequencing platforms, such as the Illumina HiSeq 2000, generate only short, ordered sequences, usually 100

Allan Spradling is a Howard Hughes Medical Institute Investigator and director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic cells—those that turn into non-reproductive tissues. Spradling uses the fruit fly Drosophila because the genes and processes studied are likely to be similar to those in other organisms including humans. In the 1980s he and his colleague, Gerald Rubin, showed how jumping genes could be used to identify and manipulate fruit fly genes. Their innovative technique helped establish Drosophila

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.