November 7, 2013 Inside every plant cell, a cytoskeleton provides an interior scaffolding to direct construction of the cell’s walls, and thus the growth of the organism as a whole....
Explore this Story
Baltimore, MD--Cells in the body wear down over time and die. In many organs, like the small intestine, adult stem cells play a vital role in maintaining function by replacing old cells with new ones...
Explore this Story
AudioBaltimore, MD—Proper tissue function and regeneration is supported by stem cells, which reside in so-called niches. New work from...
Explore this Story
Baltimore, MD—Mammalian females ovulate periodically over their reproductive lifetimes, placing significant demands on their ovaries for egg production. Whether mammals generate new eggs in adulthood...
Explore this Story
Baltimore, MD— Eggs take a long time to produce in the ovary, and thus are one of a body’s precious resources. It has been theorized that the body has mechanisms to help the ovary ensure that...
Explore this Story
Baltimore, MD— The ability of embryonic stem cells to differentiate into different types of cells with different functions is regulated and maintained by a complex series of chemical interactions,...
Explore this Story
Washington, D.C.—The Carnegie Institution for Science and the University of Massachusetts Medical School (UMMS) have been granted United States Patent 8,283,329, entitled, “Genetic inhibition of...
Explore this Story
Baltimore, MD —You may think you have dinner all to yourself, but you’re actually sharing it with a vast community of microbes waiting within your digestive tract. A new study from a team including...
Explore this Story

Pages

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into...
Explore this Project
Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous...
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH,...
Meet this Scientist
There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing...
Meet this Scientist
The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the...
Meet this Scientist
You May Also Like...
New work from Carnegie’s Ethan Greenblatt and Allan Spradling reveals that the genetic factors underlying fragile X syndrome, and potentially other autism-related disorders, stem from defects...
Explore this Story
An age-related decline in recovery from muscle injury can be traced to a protein that suppresses the special ability of muscle stem cells to build new muscles, according to work from a team of...
Explore this Story
Carnegie biologist Kamena Kostova has been selected for the Director’s Early Independence Award from the National Institutes of Health, which is designed to provide “exceptional...
Explore this Story

Explore Carnegie Science

Kamena Kostova, courtesy Navid Marvi, Carnegie Institution for Science
October 1, 2019

Baltimore, MD— Carnegie biologist Kamena Kostova has been selected for the Director’s Early Independence Award from the National Institutes of Health, which is designed to provide “exceptional junior scientists” with the opportunity to “skip traditional post-doctoral training and move immediately into independent research positions.”

Kostova is one of 13 recipients of the 2019 Early Independence Award. The recognition is part of a suite of four that comprise the NIH Director’s High-Risk, High-Reward Research Program, which honors “highly innovative biomedical or behavioral research proposed by extraordinarily creative scientists.

GDNF repairs aged muscle stem cells courtesy of Liangji Li.
September 30, 2019

Washington, DC— An age-related decline in recovery from muscle injury can be traced to a protein that suppresses the special ability of muscle stem cells to build new muscles, according to work from a team of current and former Carnegie biologists led by Chen-Ming Fan and published in Nature Metabolism.

Skeletal muscles have a tremendous capacity to make new muscles from special muscle stem cells. These “blank” cells are not only good at making muscles but also at generating more of themselves, a process called self-renewal. But their amazing abilities diminish with age, resulting in poorer muscle regeneration from muscle trauma.

The research team—

This image captures the bright blue light (chemiluminesc ence) emitted by the NanoLuc protein in LipoGlo zebrafish. It is is provided courtesy of James Thierer.
July 31, 2019

Baltimore, MD—A newly developed technique that shows artery clogging fat-and-protein complexes in live fish gave investigators from Carnegie, Johns Hopkins University, and the Mayo Clinic a glimpse of how to study heart disease in action. Their research, which is currently being used to find new drugs to fight cardiovascular disease, is now published in Nature Communications.

Fat molecules, also called lipids, such as cholesterol and triglycerides are shuttled around the circulatory system by a protein called Apolipoprotein-B, or ApoB for short. These complexes of lipid and protein are called lipoproteins but may be more commonly known as “bad cholesterol.”

One analogy for understanding the mathematical structure of the team's work is to think of it as foam being simplified into a single bubble by progressively merging adjacent bubbles.
July 2, 2019

Baltimore, MD—How do the communities of microbes living in our gastrointestinal systems affect our health? Carnegie’s Will Ludington was part of a team that helped answer this question.

For nearly a century, evolutionary biologists have probed how genes encode an individual’s chances for success—or fitness—in a specific environment.

In order to reveal a potential evolutionary trajectory biologists measure the interactions between genes to see which combinations are most fit.  An organism that is evolving should take the most fit path. This concept is called a fitness landscape, and various mathematical techniques have been developed to

No content in this section.

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

Steven Farber

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.