Washington, D.C.—Matthew Sieber, a postdoctoral fellow at the Department of Embryology, has been honored for his extraordinary accomplishments, through a new program that recognizes exceptional...
Explore this Story
Baltimore, MD— Reproduction is highly dependent on diet and the ability to use nutrients to grow and generate energy. This is clearly seen in women, who must provide all the nutritional...
Explore this Story
San Diego, CA— Ghosts are not your typical cell biology research subjects. But scientists at the Carnegie Institution for Science and the National Institute of Child Health and Human...
Explore this Story
The American Society for Cell Biology profiles Yixian Zheng and her recent papers on the elusive spindle matrix. "Zheng’s lab identifies new regulators in spindle assembly, all...
Explore this Story
Two researchers, Martin Jonikas of Carnegie’s Department of Plant Biology and Zhao Zhang of the Department of Embryology, have been awarded the New Innovator and Early Independence Awards,...
Explore this Story
Baltimore, MD— Every high school biology class learns about the tiny cells that comprise our bodies, as well as about many of the diverse actions that they perform. One of these actions is...
Explore this Story
Baltimore, MD—Carnegie’s BioEYES K-12 science educational program launches a new center sponsored by the University of Utah, Department of Pediatrics, Pediatric Research Enterprise. The...
Explore this Story
Allan Spradling offers input to The Scientist on a paper about female Japanese rice fish producing sperm....
Explore this Story

Pages

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB). Much of the work makes use of the giant...
Explore this Project
Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous...
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing...
Meet this Scientist
Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question...
Meet this Scientist
The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the...
Meet this Scientist
You May Also Like...
The brain is the body’s mission control center, sending messages to the other organs about how to respond to various external and internal stimuli. Located in the forebrain, the habenular...
Explore this Story
The interactions that take place between the species of microbes living in the gastrointestinal system often have large and unpredicted effects on health, according to new work led by Carnegie’...
Explore this Story
Baltimore, MD— As we age, the function and regenerative abilities of skeletal muscles deteriorate, which means it is difficult for the elderly to recover from injury or surgery. New work from...
Explore this Story

Explore Carnegie Science

Experimental zebrafish larvae, courtesy Navid Marvi.
August 7, 2020

Baltimore, MD—New work led by Carnegie’s Meredith Wilson and Steve Farber identifies a potential therapeutic target for clogged arteries and other health risks that stem from an excess of harmful fats in the bloodstream.  Their findings are published by PLOS Genetics. 

“Cardiovascular disease occurs when lipids from the blood plasma are deposited in the walls of blood vessels, ultimately restricting blood flow,” explained Farber, who specializes in elucidating how cells process lipids. “This complex disease affects about a third of the world’s population, so improving our understanding of the mechanisms that regulate the levels of

Xenia in Carnegie's coral facility, courtesy Carnegie Embryology
June 17, 2020

Baltimore, MD— New work from a team of Carnegie cell, genomic, and developmental biologists solves a longstanding marine science mystery that could aid coral conservation. The researchers identified the type of cell that enables a soft coral to recognize and take up the photosynthetic algae with which it maintains a symbiotic relationship, as well as the genes responsible for this transaction.

Their breakthrough research is published in Nature.

Corals are marine invertebrates that build large exoskeletons from which reefs are constructed. But this architecture is only possible because of a mutually beneficial relationship between the coral and various species of

Yixian Zheng
March 11, 2020

Baltimore, MD— Carnegie’s Director of Embryology Yixian Zheng is one of 15 scientists awarded a grant from the Gordon and Betty Moore Foundation to support research on symbiosis in aquatic systems.

For the past two years, Zheng and her colleagues have been working to elucidate the molecular mechanisms of endosymbiosis in the relationships between coral and jellyfish and the photosynthetic algal species that they host. She has been building on Carnegie’s longstanding tradition of model organism development to begin revealing the genetics underlying the uptake and sustenance of symbiotic dinoflagellates by the soft coral species Xenia.

“I have always

Illustration courtesy of Navid Marvi and Andres Aranda-Diaz.
March 5, 2020

Baltimore, MD—Antibiotics can make easy work of infections. But how do they affect the complex ecosystems of friendly bacteria that make up our microbiome?

“When a doctor prescribes antibiotics, it sets up a multi-faceted experiment in your gastrointestinal system,” explains Carnegie’s Will Ludington “What can it teach us about the molecular principles of species interactions in nature?”

New work led by Ludington and Stanford University’s K.C. Huang set out to answer this challenging question and discovered a new form of antibiotic tolerance. Their findings, which have important health implications, are published by eLife.

No content in this section.

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing factors, is needed before messenger RNA (mRNA) can be exported to the cytoplasm, the area surrounding the nucleus.

Although the biochemical details of transcription and RNA processing are known, relatively little is understood about their cellular organization. Joseph G. Gall has been an intellectual leader and has made seminal breakthroughs in our understanding of chromosomes, nuclei and

Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use a wide range of tools, including genetics in different model organisms, cell culture, biochemistry, proteomics, and genomics.

Cell division is essential for all organisms to grow and live. During a specific time in a cell’s cycle the elongated apparatus consisting of string-like micro-tubules called the spindle is assembled to

The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH, director emeritus Donald Brown studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis from South Africa.

 Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH