________________ Tuesday, November 14, 2017:  ________________ Sunday, November 12, 2017: ________________ Thursday, November 9, 2017: ________________ Monday, November 6, 2017: We’ve all seen...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Shutterstock
Washington, DC— There is considerable opportunity for generating wind power in the open ocean, particularly the North Atlantic, according to new research from Carnegie’s Anna Possner and Ken Caldeira...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Geeta Persad
Washington, DC— Carnegie’s Ken Caldeira and Geeta Persad are co-recipients of one of nine National Science Foundation grants for research on how humans and the environment interact. The nine projects...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Global biological diversity is under enormous and increasing threat from habitat loss caused by land use and climate change. Responding to this problem requires strategies that integrate elements of...
Explore this Story
Greg Asner Receives Heinz Award
Carnegie staff scientist Greg Asner has been awarded the 22nd Heinz Award for the Environment,* “ for developing ultra-high-resolution imaging technology that provides unprecedented detail on the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, William and Leander Anderegg
Washington, DC— The amount of time it takes for an ecosystem to recover from a drought is an important measure of a drought’s severity. During the 20th century, the total area of land affected by...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA Earth Observatory
Washington, DC— If climate change is not curbed, increased precipitation could substantially overload U.S. waterways with excess nitrogen, according to a new study from Carnegie’s Eva Sinha and Anna...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Ken Caldeira
Washington, DC— Geoengineering is a catch-all term that refers to various theoretical ideas for altering Earth’s energy balance to combat climate change. New research from an international team of...
Explore this Story

Pages

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass...
Explore this Project
Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development. Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the...
Explore this Project
The Carnegie Airborne Observatory (CAO), developed by GregAsner, is a fixed-wing aircraft that sweeps laser light across the vegetation canopy to image it in brilliant 3-D. The data can determine the location and size of each tree at a resolution of 3.5 feet (1.1 meter), a level of detail that is...
Explore this Project
Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional...
Meet this Scientist
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales....
Meet this Scientist
You May Also Like...
The Amazon rainforest might seem like a massive expanse of monotonous green. However, recent work from Carnegie's Greg Asner has found that within this monotony lies a kaleidoscope of chemicals...
Explore this Story
Now is the perfect moment for satellites to start measuring biodiversity, Carnegie's Greg Asner tells Mongabay. “It’s the perfect storm of conditions,” he says. More
Explore this Story
The results from a suite of environmental mercury studies done by the Carnegie Amazon Mercury Project (CAMEP) was used by the Peruvian government for the decision to announce this state of emergency...
Explore this Story

Explore Carnegie Science

November 17, 2017

________________

Tuesday, November 14, 2017: 

________________

Sunday, November 12, 2017:

________________

Thursday, November 9, 2017:

________________

Monday, November 6, 2017:

We’ve all seen the photos. Long panel tables full of people from around the globe hashing out the intricacies of how to best fight climate change for endless grueling hours.

But what’s it like to be in the room?

Carnegie’s Geeta Persad will be there and she’ll checking in with us periodically to offer an insider’s look at the 3rd Conference of the Parties to the United Nations Framework Convention on Climate

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Shutterstock
October 9, 2017

Washington, DC— There is considerable opportunity for generating wind power in the open ocean, particularly the North Atlantic, according to new research from Carnegie’s Anna Possner and Ken Caldeira. Their work is published by Proceedings of the National Academy of Sciences.

Because wind speeds are higher on average over ocean than over land, wind turbines in the open ocean could in theory intercept more than five times as much energy as wind turbines over land. This presents an enticing opportunity for generating renewable energy through wind turbines. But it was unknown whether the faster ocean winds could actually be converted to increased amounts of electricity.

“Are

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Geeta Persad
September 27, 2017

Washington, DC— Carnegie’s Ken Caldeira and Geeta Persad are co-recipients of one of nine National Science Foundation grants for research on how humans and the environment interact. The nine projects were awarded $13 million overall.

The Coupled Dynamics of Natural and Human Systems program “considers humans and the environment as one interconnected system,” said the NSF when announcing the grants. The awardees were selected because they “look at ways in which people deal with environmental processes in a range of settings, including coasts, woodlands, and cities.”

As Carnegie’s grantees, Caldeira and Persad aim to help countries optimize how they meet their commitments

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
September 20, 2017

Global biological diversity is under enormous and increasing threat from habitat loss caused by land use and climate change. Responding to this problem requires strategies that integrate elements of governance, economics, human welfare, and other societal factors. It also requires the use of geographically explicit approaches to generate safe havens for biodiversity, both in the long-term and as immediate barriers to the ongoing extinction crisis.

Prioritization of new regions for protection is often undertaken with incomplete and/or outdated information on the geography of biodiversity.  In response, Greg Asner and colleagues have created and utilized a novel capability to map

No content in this section.

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

Ken

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves” passed its 1,

Carnegie Science, Carnegie Institution for Science, Carnegie Institution

Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional to global scales.

Asner graduated with a bachelor’s degree in engineering from the University of Colorado, Boulder, in 1991. He earned master's and doctorate degrees in geography and biology, respectively, from the University of Colorado in 1997. He served as a postdoctoral fellow in the Department of Geological and Environmental Sciences at Stanford University until he joined the

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America's Climate

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the