“The system produces maps that tell us more about an ecosystem in a single airborne overpass than what might be achieved in a lifetime of work on the ground,” Greg Asner tells National Geographic in...
Explore this Story
A unique airborne observatory measures the drought stress in California at 8 million trees per hour.....
Explore this Story
"Two physical realities virtually ensure that Californians will still face drought, regardless of how this El Niño unfolds," write Department of Global Ecology Director Chris Field and Stanford's ...
Explore this Story
"It’s true that right now our fossil-fuel resources remain vast; but it’s also true that, if we keep burning through them at current rates, they’ll be gone in less time than it took for the Roman...
Explore this Story
“The legacy of what we’re doing over the next decades and the next centuries is really going to have a dramatic influence on this planet for many tens of thousands of years,” Ken Caldeira tells The...
Explore this Story
“This is humanity as a geologic force,” Ken Caldeira tells the New York Times. “We’re not a subtle influence on the climate system – we are really hitting it with a hammer.”...
Explore this Story
Washington, DC—New work from an international team including Carnegie’s Ken Caldeira demonstrates that the planet’s remaining fossil fuel resources would be sufficient to melt nearly all of...
Explore this Story
 “It’s like going in and getting a blood test, and the doctor saying you’re OK or you’re not,” Greg Asner tells The Guardian of his Carnegie Airborne Observatory team's monitoring of drought-stricken...
Explore this Story

Pages

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass...
Explore this Project
Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development. Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the...
Explore this Project
Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional...
Meet this Scientist
For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive...
Meet this Scientist
You May Also Like...
In the United States, the amount of nitrogen originating from human sources, particularly fertilizer, is four times the amount that comes from natural sources. The U.S. Environmental Protection...
Explore this Story
Washington, DC—For the first time, researchers have been able to map the true extent of gold mining in the biologically diverse region of Madre De Dios in the Peruvian Amazon. The team combined field...
Explore this Story
AudioWashington, D.C.—The planet’s soil releases about 60 billion tons of carbon into the atmosphere each year, which is far more than that released by burning fossil fuels. This happens through a...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
September 20, 2017

Global biological diversity is under enormous and increasing threat from habitat loss caused by land use and climate change. Responding to this problem requires strategies that integrate elements of governance, economics, human welfare, and other societal factors. It also requires the use of geographically explicit approaches to generate safe havens for biodiversity, both in the long-term and as immediate barriers to the ongoing extinction crisis.

Prioritization of new regions for protection is often undertaken with incomplete and/or outdated information on the geography of biodiversity.  In response, Greg Asner and colleagues have created and utilized a novel capability to map

Greg Asner Receives Heinz Award
September 14, 2017

Carnegie staff scientist Greg Asner has been awarded the 22nd Heinz Award for the Environment,* “ for developing ultra-high-resolution imaging technology that provides unprecedented detail on the biodiversity and health of the world’s forests and coral reefs, and the impact of deforestation, land degradation and climate change.” The annual award comes with a cash award of $250,000.

Asner was hired in 2001 as the Department of Global Ecology’s first staff scientist. Since coming to Carnegie, Asner has pioneered new methods for investigating tropical deforestation, degradation, ecosystem diversity, invasive species, carbon emissions, climate change, and much more using satellite and

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, William and Leander Anderegg
August 9, 2017

Washington, DC— The amount of time it takes for an ecosystem to recover from a drought is an important measure of a drought’s severity. During the 20th century, the total area of land affected by drought increased, and longer recovery times became more common, according to new research published by Nature by a group of scientists including Carnegie’s Anna Michalak and Yuanyuan Fang.

Scientists predict that more-severe droughts will occur with greater frequency in the 21st century, so understanding how ecosystems return to normal again will be crucial to preparing for the future. However, the factors that influence drought recovery have been largely unknown until now.

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA Earth Observatory
July 27, 2017

Washington, DC— If climate change is not curbed, increased precipitation could substantially overload U.S. waterways with excess nitrogen, according to a new study from Carnegie’s Eva Sinha and Anna Michalak and Princeton University’s Venkatramani Balaji published by Science. Excess nutrient pollution increases the likelihood of events that severely impair water quality. The study found that impacts will be especially strong in the Midwest and Northeast.

Rainfall and other precipitation washes nutrients from human activities like agriculture and fossil fuel combustion into rivers and lakes. When these waterways get overloaded with nutrients, a phenomenon called “eutrophication,”

No content in this section.

Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

Ken

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Carnegie Science, Carnegie Institution for Science, Carnegie Institution

Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional to global scales.

Asner graduated with a bachelor’s degree in engineering from the University of Colorado, Boulder, in 1991. He earned master's and doctorate degrees in geography and biology, respectively, from the University of Colorado in 1997. He served as a postdoctoral fellow in the Department of Geological and Environmental Sciences at Stanford University until he joined the

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the

For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive team of researchers who investigate the basics of climate change. Field has authored more than 200 scientific publications and is cochair of the U. N.'s Intergovernmental Panel on Climate Change (IPCC) Working Group 2. The IPCC Fourth Assessment, for which Field was a coordinating author, was published in 2007. He was coeditor of the March 2012 IPCC Special Report on Managing the Risks of Extreme

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves” passed its 1,