“This is humanity as a geologic force,” Ken Caldeira tells the New York Times. “We’re not a subtle influence on the climate system – we are really hitting it with a hammer.”...
Explore this Story
Washington, DC—New work from an international team including Carnegie’s Ken Caldeira demonstrates that the planet’s remaining fossil fuel resources would be sufficient to melt nearly all of...
Explore this Story
 “It’s like going in and getting a blood test, and the doctor saying you’re OK or you’re not,” Greg Asner tells The Guardian of his Carnegie Airborne Observatory team's monitoring of drought-stricken...
Explore this Story
Climate change could give San Francisco the climate index of San Diego and New York City the climate index of Oklahoma City, according to new research from Ken Caldeira and high school intern Yana...
Explore this Story
Washington, DC— Climate change caused by greenhouse gas emissions will alter the way that Americans heat and cool their homes. By the end of this century, the number of days each year that heating...
Explore this Story
Stop burning fossil fuels now: there is no CO2 'technofix', scientists warn...
Explore this Story
Washington, DC—Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These changes would linger even...
Explore this Story
Washington, D.C.—Carnegie investigator Greg Asner has been elected a Fellow of the American Geophysical Union (AGU). He is one of 60 new members. The honor is given “to individual AGU members who...
Explore this Story

Pages

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation...
Explore this Project
Carnegie researchers are developing new scientific approaches that integrate phylogenetic, chemical and spectral remote sensing perspectives - called Spectranomics - to map canopy function and biological diversity throughout tropical forests of the world. Mapping the composition and chemistry of...
Explore this Project
The Carnegie Airborne Observatory (CAO), developed by GregAsner, is a fixed-wing aircraft that sweeps laser light across the vegetation canopy to image it in brilliant 3-D. The data can determine the location and size of each tree at a resolution of 3.5 feet (1.1 meter), a level of detail that is...
Explore this Project
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional...
Meet this Scientist
You May Also Like...
AudioWashington, D.C.—Lake Erie just can’t catch a break. The lake has experienced harmful algal blooms and severe oxygen-depleted “dead zones” for years, but now a team of researchers led by...
Explore this Story
Washington, D.C. – Carnegie Science announces the launch of the Carnegie Airborne Observatory-3 (CAO-3), the most scientifically advanced aircraft-based mapping and data analytics system in civil...
Explore this Story
YouTubeWashington, D.C.— The pace of global warming over the last century has been about twice as rapid over land than over the oceans and will continue to be more dramatic going forward if emissions...
Explore this Story

Explore Carnegie Science

November 20, 2017

________________

Tuesday, November 17, 2017: 

________________

Tuesday, November 14, 2017: 

________________

Sunday, November 12, 2017:

________________

Thursday, November 9, 2017:

________________

Monday, November 6, 2017:

We’ve all seen the photos. Long panel tables full of people from around the globe hashing out the intricacies of how to best fight climate change for endless grueling hours.

But what’s it like to be in the room?

Carnegie’s Geeta Persad will be there and she’ll checking in with us periodically to offer an insider’s look at the 3rd Conference of

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Shutterstock
October 9, 2017

Washington, DC— There is considerable opportunity for generating wind power in the open ocean, particularly the North Atlantic, according to new research from Carnegie’s Anna Possner and Ken Caldeira. Their work is published by Proceedings of the National Academy of Sciences.

Because wind speeds are higher on average over ocean than over land, wind turbines in the open ocean could in theory intercept more than five times as much energy as wind turbines over land. This presents an enticing opportunity for generating renewable energy through wind turbines. But it was unknown whether the faster ocean winds could actually be converted to increased amounts of electricity.

“Are

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Geeta Persad
September 27, 2017

Washington, DC— Carnegie’s Ken Caldeira and Geeta Persad are co-recipients of one of nine National Science Foundation grants for research on how humans and the environment interact. The nine projects were awarded $13 million overall.

The Coupled Dynamics of Natural and Human Systems program “considers humans and the environment as one interconnected system,” said the NSF when announcing the grants. The awardees were selected because they “look at ways in which people deal with environmental processes in a range of settings, including coasts, woodlands, and cities.”

As Carnegie’s grantees, Caldeira and Persad aim to help countries optimize how they meet their commitments

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
September 20, 2017

Global biological diversity is under enormous and increasing threat from habitat loss caused by land use and climate change. Responding to this problem requires strategies that integrate elements of governance, economics, human welfare, and other societal factors. It also requires the use of geographically explicit approaches to generate safe havens for biodiversity, both in the long-term and as immediate barriers to the ongoing extinction crisis.

Prioritization of new regions for protection is often undertaken with incomplete and/or outdated information on the geography of biodiversity.  In response, Greg Asner and colleagues have created and utilized a novel capability to map

No content in this section.

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

Ken

Carnegie researchers are developing new scientific approaches that integrate phylogenetic, chemical and spectral remote sensing perspectives - called Spectranomics - to map canopy function and biological diversity throughout tropical forests of the world.

Mapping the composition and chemistry of species in tropical forests is critical to understanding forest functions related to human use and climate change. However, high-resolution mapping of tropical forest canopies is challenging because traditional field, airborne and satellite measurements cannot easily measure the canopy chemical or taxonomic variation among species over large regions. New technology, such as the Carnegie

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves” passed its 1,

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the

For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive team of researchers who investigate the basics of climate change. Field has authored more than 200 scientific publications and is cochair of the U. N.'s Intergovernmental Panel on Climate Change (IPCC) Working Group 2. The IPCC Fourth Assessment, for which Field was a coordinating author, was published in 2007. He was coeditor of the March 2012 IPCC Special Report on Managing the Risks of Extreme

Carnegie Science, Carnegie Institution for Science, Carnegie Institution

Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional to global scales.

Asner graduated with a bachelor’s degree in engineering from the University of Colorado, Boulder, in 1991. He earned master's and doctorate degrees in geography and biology, respectively, from the University of Colorado in 1997. He served as a postdoctoral fellow in the Department of Geological and Environmental Sciences at Stanford University until he joined the