Now is the perfect moment for satellites to start measuring biodiversity, Carnegie's Greg Asner tells Mongabay. “It’s the perfect storm of conditions,” he says. ...
Explore this Story
“I started out thinking that it was all about information, and if we only got the right information to the right people, then the right things would happen,” Carnegie's Ken Caldeira...
Explore this Story
A pair of researchers have new evidence to support a link between cyclical comet showers and mass extinctions, including the one that they believe wiped out the dinosaurs 66 million years ago. NYU...
Explore this Story
Solar power developers in California have been using mostly undeveloped desert lands with sensitive wildlife habitat as sites for new solar power installations. Areas that have already been developed...
Explore this Story
"Some of the scariest prospects from a changing clime involve conditions completely outside the range of human experience," Department of Global Ecology Director Chris Field tells the...
Explore this Story
Impacts of Large Herbivores on Vegetation: publications from the journals Ecography and Publications of the National Academy of Sciences
Explore this Story
Washington, DC— Protected areas, such as nature reserves and national parks, play a crucial role in sheltering wildlife, such as African elephants, from hunting and habitat destruction. But it...
Explore this Story
The L.A. Times covers the Carnegie Airborne Observatory's assessment of California's drought: "Asner has a practiced eye for forest health, and with instruments aboard his plane that...
Explore this Story

Pages

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake...
Explore this Project
Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass...
Explore this Project
Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
Ken Caldeira was a Carnegie investigator from 2005 to 2020 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long...
Meet this Scientist
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. She was named Director of the Department of Global Ecology in 2020. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems...
Meet this Scientist
Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales....
Meet this Scientist
You May Also Like...
Read the Washington Post story on California solar power potential. March 3-17-15
Explore this Story
Mongabay covers the launch of Greg Asner's third-generation Carnegie Airborne Observatory, and the possiblity that he'll tackle mapping in drought-stricken California and Malaysian...
Explore this Story
Washington, D.C.— A great deal of research has focused on the amount of global warming resulting from increased greenhouse gas concentrations. But there has been relatively little study of the pace...
Explore this Story

Explore Carnegie Science

December 15, 2020

Washington, DC— Developing nations have an opportunity to avoid long-term dependence on fossil fuel-burning infrastructure as they move toward economic stability, even if they are slow to cut carbon emissions, say the authors of a new paper in Environmental Research Letters.

Countries with low per capita incomes can keep their contributions to global warming to 0.3 degrees Celsius with careful foresight and planning, urge Carnegie’s Lei Duan and Ken Caldeira with Juan Moreno-Cruz of the University of Waterloo. However, fueling economic development with coal, oil, or gas risks locking societies into a fossil-fuel burning infrastructure in the long-term, the authors

September 29, 2020

Washington, DC— A 10-year effort by China to improve air quality and reduce pollution-related health risks has caused warming in areas across the northern hemisphere, according to new work published in Environmental Research Letters.

Aerosols are tiny particles that are spewed into the atmosphere by human activities, such as burning coal and wood, or by geological phenomena, like volcanos. Their negative effects on air quality can damage human health and agricultural productivity.

Similar to how the aerosols emitted in a volcanic eruption can cause global temperatures to drop, some aerosols from human activity also have a cooling effect on the climate. Unlike

Anna Michalak
August 19, 2020

Palo Alto, CA—Anna Michalak has been named the Director of Carnegie’s Department of Global Ecology. As a world-renowned researcher, her leadership will be invaluable as Carnegie works to rebuild the department and to establish its new home in Pasadena.

Michalak's work centers on characterizing the emissions and cycling of greenhouse gases on scales ranging from urban to global, making it possible to track and anticipate changes in carbon emissions and uptake. She also explores the impacts of climate change on water quality in freshwater and coastal systems in support of water sustainability goals. These research areas demonstrate the urgent

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

No content in this section.

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Ken Caldeira was a Carnegie investigator from 2005 to 2020 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. She was named Director of the Department of Global Ecology in 2020. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide