Antarctica
New work from an international team including Carnegie’s Ken Caldeira demonstrates that the planet’s remaining fossil fuel resources would be sufficient to melt nearly all of Antarctica...
Explore this Story
Washington, DC— A new study, based on the most-extensive set of measurements ever made in tide pools, suggests that ocean acidification will increasingly put many marine organisms at risk by...
Explore this Story
Washington, D.C.—For the first time scientists have looked at the net balance of the three major greenhouse gases—carbon dioxide, methane, and nitrous oxide—for every region of...
Explore this Story
How big a role does ocean acidification play in the sickly state of many coral reefs? Science magazine reports on a new study from Ken Caldeira and Rebecca Albright that borrows from a...
Explore this Story
USA Today reports on a first-of-its-kind experiment led by Rebecca Albright and  Ken Caldeira that found ocean acidification caused by global warming is already slowing growth of the world...
Explore this Story
Washington, DC— A team of scientists led by Carnegie’s Rebecca Albright and Ken Caldeira performed the first-ever experiment that manipulated seawater chemistry in a natural coral reef...
Explore this Story
"If drought conditions continue or reoccur, even with temporary reprieves such as El Niño, we predict substantial future forest change," Greg Asner says in The Huffington Post....
Explore this Story
coral
A team of scientists led by Carnegie’s Rebecca Albright and Ken Caldeira performed the first-ever experiment that manipulated seawater chemistry in a natural coral reef community in order to...
Explore this Story

Pages

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (...
Explore this Project
Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake...
Explore this Project
Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
Ken Caldeira was a Carnegie investigator from 2005 to 2020 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long...
Meet this Scientist
Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales....
Meet this Scientist
You May Also Like...
Washington, D.C.— There is enough energy available in winds to meet all of the world’s demand. Airbourne wind turbines that convert steadier and faster high-altitude winds into energy could generate...
Explore this Story
Washington, D.C.—By combining airborne laser technology, satellite mapping, and ground-based plot surveys, a team of researchers has produced the first large-scale, high-resolution estimates of...
Explore this Story
Artificially manipulating Arctic climate by 'whitening' the ocean's surface to reflect sunlight back into space will fail, Carnegie's Ken Caldeira tells The Independent. More
Explore this Story

Explore Carnegie Science

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

Downwelling field experiment at Searsville Reservoir. Courtesy Nona Chiariello.
March 2, 2020

Washington, DC— Could pumping oxygen-rich surface water into the depths of lakes, estuaries, and coastal ocean waters help ameliorate dangerous dead zones? New work led by Carnegie’s David Koweek and Ken Caldeira and published open access by Science of the Total Environment says yes, although they caution that further research would be needed to understand any possible side effects before implementing such an approach.

When excessive nutrients from agriculture and other human activities wash into waterways, it can create a dangerous phenomenon called eutrophication. This can lead to low-oxygen dead zones called hypoxia.

“Low-oxygen dead zones are one of

Land and air pollution in Amravati, India, purchased from Shutterstock.
February 17, 2020

Washington, DC— Aerosol emissions from burning coal and wood are dangerous to human health, but it turns out that by cooling the Earth they also diminish global economic inequality, according to a new study by Carnegie’s Yixuan Zheng, Geeta Persad, and Ken Caldeira, along with UC Irvine’s Steven Davis. Their findings are published by Nature Climate Change.

Tiny particles spewed into the atmosphere by human activity, called “anthropogenic aerosols,” interact with clouds and reflect some of the Sun’s energy back into space. They have a short-term cooling effect that’s similar to how particles from major volcanic eruptions can cause global

The sea anemone Aiptasia, photo by Ken Caldeira
November 12, 2019

Washington, DC— Bleached anemones—those lacking symbiotic algae—do not move toward light, a behaviour exhibited by healthy, symbiotic anemones. Published in Coral Reefs, this finding from Carnegie’s Shawna Foo, Arthur Grossman, and Ken Caldeira, along with Lauren Liddell of the NASA Ames Research Center, is a fascinating case study for exploring the concept of control in a symbiotic relationship.

Anemones are closely related to coral and can help scientists understand coral reef ecosystems. Like corals, they host algae that convert the Sun’s energy into food by a process called photosynthesis. The algae share some of the nutrients they produce with

No content in this section.

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide

Ken Caldeira was a Carnegie investigator from 2005 to 2020 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America