We are missing aat least 145 carbon-bearing minerals and you can help find them. Smithsonian Magazine covers the Carbon Mineral Challenge, launched by Robert Hazen and Daniel Hummer at The American...
Explore this Story
Washington, DC— As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their...
Explore this Story
Washington, DC—Colossal magnetoresistance is a property with practical applications in a wide array of electronic tools including magnetic sensors and magnetic RAM. New research from a team including...
Explore this Story
Alexander Goncharov's experiment on noble gases could give new insight into the interiors of gas giant planets says Scientific American....
Explore this Story
Colossal magnetoresistance is a property with practical applications in a wide array of electronic tools including magnetic sensors and magnetic RAM. New research from a team including Carnegie’s...
Explore this Story
New work from Carnegie’s Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure.
Explore this Story
Washington, DC— Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. It can only be found in certain...
Explore this Story
Washington, D.C.— Carbonates are a group of minerals that contain the carbonate ion (CO32-) and a metal, such as iron or magnesium. Carbonates are important constituents of marine sediments and are...
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and...
Explore this Project
The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech...
Explore this Project
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Dave Mao’s research centers on ultra-high pressure physics, chemistry, material sciences, geophysics, geochemistry and planetary sciences using diamond-anvil cell techniques that he has pioneered. He is also director of the Energy Frontier Research in Extreme Environments (EFree) center at the...
Meet this Scientist
Ronald Cohen primarily studies materials through first principles research—computational methods that begin with the most fundamental properties of a system, such as the nuclear charges of atoms, and then calculate what happens to a material under different conditions, such as pressure and...
Meet this Scientist
You May Also Like...
Washington, D.C.—Table salt, sodium chloride, is one of the first chemical compounds that schoolchildren learn. Standard chemistry textbooks say that sodium and chlorine have very different...
Explore this Story
Washington, D.C. — Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. This phenomenon can only be found in...
Explore this Story
Experimental petrologist Michael Walter, currently head of the School of Earth Sciences at the University of Bristol, has been selected as the eighth director of Carnegie’s Geophysical Laboratory.  ...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, National Science Review
November 13, 2017

Washington, DC— Reservoirs of oxygen-rich iron between the Earth’s core and mantle could have played a major role in Earth’s history, including the breakup of supercontinents, drastic changes in Earth’s atmospheric makeup, and the creation of life, according to recent work from an international research team published in National Science Review.

The team—which includes scientists from Carnegie, Stanford University, the Center for High Pressure Science and Technology Advanced Research in China, and the University of Chicago—probed the chemistry of iron and water under the extreme temperatures and pressures of the Earth’s core-mantle boundary.

When the action of plate

August 30, 2017

Washington, DC— A team of Carnegie high-pressure physicists have created a form of carbon that’s hard as diamond, but amorphous, meaning it lacks the large-scale structural repetition of a diamond’s crystalline structure. Their findings are reported in Nature Communications.

Carbon is an element of seemingly infinite possibilities, because the configuration of its electrons allows for numerous self-bonding combinations that give rise to a range of materials with varying properties.

For example, some forms of carbon, such as coal, are what’s called amorphous, meaning that they lack the long-range repetitive structure that makes up a crystal.

Other forms of carbon are

August 1, 2017

The Geophysical Laboratory’s Postdoctoral Associate Zachary Geballe has been honored with Carnegie’s seventh Postdoctoral Innovation and Excellence (PIE) Award. These prizes are made through nominations from the departments and are chosen by the Office of the President. Geballe, in Viktor Struzhkin’s lab, was awarded the prize for his scientific innovations and community service to the Broad Branch Road (BBR) campus.

Zack works on developing methods to measure the heat capacities of metals and silicates at high pressures. This work applies to developing new materials and studying the deep interiors of planets.   He developed a pioneering technique to measure heat in a diamond

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, University of Bristol
July 13, 2017

Washington, DC— Experimental petrologist Michael Walter, currently head of the School of Earth Sciences at the University of Bristol, has been selected as the eighth director of Carnegie’s Geophysical Laboratory.  He will begin his directorship on April 1, 2018.  

Walter has been at Bristol since 2004 and began a five-year term as head of school in 2013. He received his PhD in geology and Earth science from the University of Texas, Dallas, and a Bachelor of Science in the same from the University of Nebraska, Omaha. Early in his career, Walter was a postdoctoral fellow at the Geophysical Laboratory, so his new role is a homecoming.

Walter’s recent research has focused on

No content in this section.

The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois.

The integrated HPCAT facility has established four operating beamlines in nine hutches An array of novel X-ray diffraction—imaging at tiny scales--and spectroscopic techniques to reveal chemistry,  has been integrated with high pressure and extreme temperature instrumentation.

With a multidisciplinary approach and multi-institution collaborations, the high-pressure program at the HPCAT has enabeld myriad scientific

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and coordinate static, dynamic and theoretical results. The research objectives include making highly accurate measurements to understand the transitions of materials into different phases under the multimegabar pressure rang; determine the electronic and magnetic properties of solids and fluid to multimegabar pressures and elevated temperatures; to bridge the gap between static and dynamic

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech, Cornell, Penn State, Lehigh, and Colorado School of Mines—and will use facilities built and managed by the Geophysical Laboratory at Argonne, Brookhaven, and Oak Ridge National Laboratories. Nine Geophysical Laboratory scientists will participate in the effort, along with Russell Hemley as director and Tim Strobel as associate director.

To achieve their goal, EFree personnel synthesize

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical fingerprints of

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to shed light

Ronald Cohen primarily studies materials through first principles research—computational methods that begin with the most fundamental properties of a system, such as the nuclear charges of atoms, and then calculate what happens to a material under different conditions, such as pressure and temperature. He particularly focuses on properties of materials under extreme conditions such as high pressure and high temperature. This research applies to various topics and problems in geophysics and technological materials.

Some of his work focuses on understanding the behavior of high-technology materials called ferroelectrics—non-conducting crystals with an electric dipole moment similar

Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials.

For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But normal silicon is not optimal for solar energy. In its conventional crystalline form, silicon is relatively inefficient at absorbing the wavelengths most prevalent in sunlight.  Strobel made a discovery that may turn things around.  Using the high-pressure techniques pioneered at Carnegie, he created a novel form of silicon with its atoms arranged in a cage-like structure. Unlike normal silicon, this