Washington, DC— Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here. The motion of liquid iron in the planet’s...
Explore this Story
Washington, DC—New work from a research team led by Carnegie’s Anat Shahar contains some unexpected findings about iron chemistry under high-pressure conditions, such as those likely...
Explore this Story
Washington, DC—If you freeze any liquid fast enough, even liquid metal, it becomes a glass. Vitrified metals, or metallic glasses, are at the frontier of materials science research. They have...
Explore this Story
We are missing aat least 145 carbon-bearing minerals and you can help find them. Smithsonian Magazine covers the Carbon Mineral Challenge, launched by Robert Hazen and Daniel Hummer at The American...
Explore this Story
Washington, DC— As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their...
Explore this Story
Washington, DC—Colossal magnetoresistance is a property with practical applications in a wide array of electronic tools including magnetic sensors and magnetic RAM. New research from a team...
Explore this Story
Alexander Goncharov's experiment on noble gases could give new insight into the interiors of gas giant planets says Scientific American....
Explore this Story
Colossal magnetoresistance is a property with practical applications in a wide array of electronic tools including magnetic sensors and magnetic RAM. New research from a team including Carnegie...
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the...
Meet this Scientist
Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials. For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But...
Meet this Scientist
Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural...
Meet this Scientist
You May Also Like...
Washington, DC— Hydrogen is the most-abundant element in the universe. It’s also the simplest—sporting only a single electron in each atom. But that simplicity is deceptive, because there is still so...
Explore this Story
Washington, D.C.— A team including Carnegie’s Malcolm Guthrie and George Cody has, for the first time, discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties...
Explore this Story
Washington, DC— Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. It can only be found in certain...
Explore this Story

Explore Carnegie Science

March 13, 2019

Carolyn Beaumont, a senior at the Potomac School in McLean VA, won 5th place in the 78th Regeneron Science Talent Search. During the summer of 2018, she worked with Geophysical Laboratory staff members George Cody and Bjorn Mysen on a project to shed light on the molecular details of how water interacts with silicate melts. During her time, she learned how to run all aspects of the experiment, including how to operate a piston cylinder pressure apparatus that generates pressures on the order of 1.5 GPa and temperatures in excess of 1400°C. She also used molecular spectroscopy and nuclear magnetic resonance spectroscopy, to obtain detailed

September 20, 2018

A new Venture Grant has been awarded to the Geophysical Laboratory’s Dionysis Foustoukos and Sue Rhee of the Department of Plant Biology, with colleague Costantino Vetriani of Rutgers University for their project Deciphering Life Functions in Extreme Environments.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions. Each grant provides $100,000 support for two years with the hope for surprising outcomes. The grants are generously supported, in part, by trustee Michael Wilson and his wife Jane and by the Ambrose Monell Foundation.

Deep sea hydrothermal vents

Unraveling the properties of fluid metallic hydrogen could help scientists unlock the mysteries of Jupiter’s formation and internal structure. Credit: Mark Meamber, LLNL.
August 15, 2018

Washington, DC—Lab-based mimicry allowed an international team of physicists including Carnegie’s Alexander Goncharov to probe hydrogen under the conditions found in the interiors of giant planets—where experts believe it gets squeezed until it becomes a liquid metal, capable of conducting electricity. Their work is published in Science.

Hydrogen is the most-abundant element in the universe and the simplest—comprised of only a one proton and one electron in each atom. But that simplicity is deceptive, because there is still so much to learn about it, including its behavior under conditions not found on Earth.

For example, although hydrogen on the

Nitrogen is the dominant gas in Earth’s atmosphere, where it is most-commonly bonded with itself in diatomic N2 molecules. New work indicate that it becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep insi
July 9, 2018

Washington, DC—New work from a team led by Carnegie’s Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep inside the Earth and other planets. Their findings are published by Nature Communications.

Nitrogen is one of the most-common elements in the universe and is crucial to life on Earth. In living organisms, it is a key part of the makeup of both the nucleic acids that form genetic material and the amino acids that make up proteins. It comprises nearly 80 percent of the Earth’s atmosphere.

But what about how nitrogen

No content in this section.

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from

Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature superconductor under pressure—a state predicted by theory, but thus far unattained—to discover new superconductors, and to learn what happens to materials in Earth’s deep interior where pressure and temperature conditions are extreme. 

Recently, a team including Struzhkin was the first to discover the conditions under which nickel oxide can turn into an electricity-

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that can be gleaned from mineral impurities preserved inside diamonds.

Walter