Washington, DC— New research on oxygen and iron chemistry under the extreme conditions found deep inside the Earth could explain a longstanding seismic mystery called ultralow velocity zones....
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, National Science Review
Washington, DC— Reservoirs of oxygen-rich iron between the Earth’s core and mantle could have played a major role in Earth’s history, including the breakup of supercontinents,...
Explore this Story
Washington, DC— A team of Carnegie high-pressure physicists have created a form of carbon that’s hard as diamond, but amorphous, meaning it lacks the large-scale structural repetition of...
Explore this Story
The Geophysical Laboratory’s Postdoctoral Associate Zachary Geballe has been honored with Carnegie’s seventh Postdoctoral Innovation and Excellence (PIE) Award. These prizes are made...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, University of Bristol
Washington, DC— Experimental petrologist Michael Walter, currently head of the School of Earth Sciences at the University of Bristol, has been selected as the eighth director of Carnegie’...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Tim Strobel
Washington, DC— A team including several Carnegie scientists has developed a form of ultrastrong, lightweight carbon that is also elastic and electrically conductive. A material with such a...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—Recovered minerals that originated in the deep mantle can give scientists a rare glimpse into the dynamic processes occurring deep inside of the Earth and into the history of the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—It would be difficult to overestimate the importance of silicon when it comes to computing, solar energy, and other technological applications. (Not to mention the fact that it...
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the...
Meet this Scientist
You May Also Like...
Washington, D.C.— Carbonates are a group of minerals that contain the carbonate ion (CO32-) and a metal, such as iron or magnesium. Carbonates are important constituents of marine sediments and are...
Explore this Story
Washington, D.C.—Hydrogen is the most abundant element in the universe. The way it responds under extreme pressures and temperatures is crucial to our understanding of matter and the nature of...
Explore this Story
A team of scientists including Carnegie’s Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic molecules,...
Explore this Story

Explore Carnegie Science

Stock image of the transition metals section of the periodic table
July 1, 2020

Washington, DC— You’ve heard the expression form follows function? In materials science, function follows form.

New research by Carnegie’s Olivier Gagné and collaborator Frank Hawthorne of the University of Manitoba categorizes the causes of structural asymmetry, some surprising, which underpin useful properties of crystals, including ferroelectricity, photoluminescence, and photovoltaic ability. Their findings are published this week as a lead article in the International Union of Crystallography Journal.

“Understanding how different bond arrangements convey various useful attributes is central to the materials sciences” explained

April 15, 2020

Washington, DC— Carnegie mineralogist Robert Hazen was inducted last month as a foreign member of the Russian Academy of Sciences—the nation’s highest-level scientific society, originally founded by Peter the Great. This is a rare honor for an American researcher.

The ceremony, originally scheduled for the end of March, was postponed by the COVID-19 pandemic.

A Staff Scientist at Carnegie’s Earth and Planets Laboratory, Hazen pioneered the concept of mineral evolution—linking an explosion in mineral diversity to the rise of life on Earth—and developed  the idea of mineral ecology—which analyzes the spatial distribution of the

Carbon-boron clathrate cage with strontium inside, courtesy Tim Strobel
January 10, 2020

Washington, DC— A long-sought-after class of “superdiamond” carbon-based materials with tunable mechanical and electronic properties was predicted and synthesized by Carnegie’s Li Zhu and Timothy Strobel. Their work is published by Science Advances.

Carbon is the fourth-most-abundant element in the universe and is fundamental to life as we know it. It is unrivaled in its ability to form stable structures, both alone and with other elements.

A material’s properties are determined by how its atoms are bonded and the structural arrangements that these bonds create. For carbon-based materials, the type of bonding makes the difference between the

December 16, 2019

Washington, DC— Every school child learns about the water cycle—evaporation, condensation, precipitation, and collection. But what if there were a deep Earth component of this process happening on geologic timescales that makes our planet ideal for sustaining life as we know it?

New work published in the Proceedings of the National Academy of Sciences by Carnegie’s Yanhao Lin and Michael Walter—along with former Carnegie scientists and ongoing collaborators Ho-Kwang “Dave” Mao and Qingyang Hu of the Center for High Pressure Science and Technology Advanced Research Shanghai and Yue Meng of Argonne National Laboratory—demonstrates that a key

No content in this section.

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that can be gleaned from mineral impurities preserved inside diamonds.

Walter

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical