Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Palo Alto, CA—New work from a joint team of plant biologists and ecologists from Carnegie and Stanford University has uncovered the factor behind an important innovation that makes grasses—both the...
Explore this Story
Stanford, CA—New work from Carnegie’s Shouling Xu and Zhiyong Wang reveals that the process of synthesizing many important master proteins in plants involves extensive modification, or “tagging” by...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Stanford, CA—Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our...
Explore this Story
Stanford, CA—We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are transferred...
Explore this Story
Stanford, CA— A feature thought to make plants sensitive to drought could actually hold the key to them coping with it better, according to new findings published by eLife, from Kathryn Barton of the...
Explore this Story
Stanford, CA—The Howard Hughes Medical Institute (HHMI) and the Simons Foundation have awarded José Dinneny, of Carnegie’s Department of Plant Biology an HHMI-Simons Faculty Scholar grant. He is one...
Explore this Story
Photosynthesis
Learning about ‪photosynthesis is fun! Life as we know it on Earth couldn't exist without this amazing process. And what better way to understand and appreciate everything that plants and algae do...
Explore this Story
Plants have tiny pores on their leaves called stomata—Greek for mouths—through which they take in carbon dioxide from the air and from which water evaporates. New work from the lab of Dominique...
Explore this Story

Pages

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii....
Explore this Project
Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf...
Explore this Project
Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20% of...
Meet this Scientist
It’s common knowledge that light is essential for plants to perform photosynthesis—converting light energy into chemical energy by transforming carbon dioxide and water into sugars for fuel. Plants maximize the process by bending toward the light in a process called phototropism, which is...
Meet this Scientist
Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell...
Meet this Scientist
You May Also Like...
Scientists, including Carnegie’s David Ehrhardt and Heather Cartwright, have exploited a way to watch protein trafficking to make cellulose in the formation of plant cell walls in real time.
Explore this Story
New work from a joint team of plant biologists and ecologists has uncovered the factor behind an important innovation that makes grasses—both the kind found in native prairies and the kind we’ve...
Explore this Story
Washington, D.C.— Postdoctoral fellow, Rubén Rellán-Álvarez at the Department of Plant Biology has been awarded the prestigious Marschner Young Scientist Award by the International Plant Nutrition...
Explore this Story

Explore Carnegie Science

October 4, 2017

Science News magazine has selected José Dinneny, of Carnegie’s Department of Plant Biology, as one of ten young scientists to watch in 2017. The researchers were selected because they are likely to make big discoveries. The investigators are spotlighted in the October 14 edition of Science News available online today at www.sciencenews.org/SN10.

Dinneny looks at the mechanisms plants use to sense water availability and survive stressful conditions such as drought and high salinity. He investigates developmental pathways and molecular genetic mechanisms involved in shaping the plant to suit the environment. His work has included the processes of water-stress responses in plants at

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Donald Danforth Plant Science Center
October 2, 2017

Stanford, CA— Carnegie Plant Biology Acting Director Sue Rhee and staff scientist José Dinneny and their labs are part of a research effort led by The Donald Danforth Plant Science Center, one of the world’s largest independent plant science institutes, which today announced a 5-year, $16 million grant from the U.S. Department of Energy.

Building on earlier research using the often-studied model grass called green foxtail (Setaria viridis), this project will identify new genes and pathways that contribute to photosynthesis and enhanced water-use efficiency. The team will then deploy these genes using tools from the emerging field of synthetic biology to accelerate development of

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Max Planck Institute of Biochemistry
September 21, 2017

Stanford, CA— How do green algae grow so quickly?  Two new collaborations offer insight into how these organisms siphon carbon dioxide from the air for use in photosynthesis, a key factor in their ability to rapidly take over a swimming pool or pond. Understanding this process may someday help researchers improve the growth rate of agricultural crops such as wheat and rice.

In two studies published this week in the journal Cell, a Princeton-led team with collaborators from Carnegie and the Max Planck Institute of Biochemistry reported the first detailed inventory of the cellular compartment called the pyrenoid, which algae use to collect and concentrate carbon dioxide, making the

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 17, 2017

Palo Alto, CA— The red algae called Porphyra and its ancestors have thrived for millions of years in the harsh habitat of the intertidal zone—exposed to fluctuating temperatures, high UV radiation, severe salt stress, and desiccation.

Red algae comprise some of the oldest non-bacterial photosynthetic organisms on Earth, and one of the most-ancient of all multicellular lineages. They are also fundamentally integrated into human culture and economics around the globe. Some red algae play a major role in building coral reefs while others serve as “seaweed” foods that are integral to various societies. Porphyra is included in salads (as are related genera of algae), is called “nori”

No content in this section.

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to achieve broad, durable

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an interior

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in repeating units. The structure responsible for

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman and

It’s common knowledge that light is essential for plants to perform photosynthesis—converting light energy into chemical energy by transforming carbon dioxide and water into sugars for fuel. Plants maximize the process by bending toward the light in a process called phototropism, which is particularly important for germinated seedlings to maximize light capture for growth. Winslow Briggs has been a worldwide leader in unraveling the molecular mechanisms behind this essential plant process.

Over a decade ago Briggs and colleagues discovered and first characterized the photoreceptor family that mediates this directional response and named the two members phototropin 1 and