Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Stanford, CA—Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our...
Explore this Story
Stanford, CA—We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are transferred...
Explore this Story
Stanford, CA— A feature thought to make plants sensitive to drought could actually hold the key to them coping with it better, according to new findings published by eLife, from Kathryn Barton of the...
Explore this Story
Stanford, CA—The Howard Hughes Medical Institute (HHMI) and the Simons Foundation have awarded José Dinneny, of Carnegie’s Department of Plant Biology an HHMI-Simons Faculty Scholar grant. He is one...
Explore this Story
Photosynthesis
Learning about ‪photosynthesis is fun! Life as we know it on Earth couldn't exist without this amazing process. And what better way to understand and appreciate everything that plants and algae do...
Explore this Story
Plants have tiny pores on their leaves called stomata—Greek for mouths—through which they take in carbon dioxide from the air and from which water evaporates. New work from the lab of Dominique...
Explore this Story
Carnegie, Carnegie Science, Carnegie Institution for Science, plant biology, crown roots, Jose Sebastian
Stanford, CA— With a growing world population and a changing climate, understanding how agriculturally important plants respond to drought is crucial. New work from a team led by Carnegie’s José...
Explore this Story
Stanford, CA— Plants have tiny pores on their leaves called stomata—Greek for mouths—through which they take in carbon dioxide from the air and from which water evaporates. New work from the lab of...
Explore this Story

Pages

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant...
Explore this Project
Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii....
Explore this Project
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
Steroids are important hormones in both animals and plants. They bulk up plants just as they do human athletes, but the pathway of molecular signals that tell the genes to boost growth and development is more complex in plant cells than in animal cells. Unlike animals, plants do not have glands to...
Meet this Scientist
It’s common knowledge that light is essential for plants to perform photosynthesis—converting light energy into chemical energy by transforming carbon dioxide and water into sugars for fuel. Plants maximize the process by bending toward the light in a process called phototropism, which is...
Meet this Scientist
You May Also Like...
Washington, D.C.--Plant Biology postdoctoral research associate since 2012, Jia-Ying Zhu was awarded the sixth PIE award for her creativity, productivity, being a great team player in research, “and...
Explore this Story
Washington Post gardening columnist, Adrian Higgins, writes about the quest for the perfect tomato and this month's Capital Science Evening speaker, Harry Klee of the University of Florida...
Explore this Story
Valdivia, Chile, and Washington, D.C.—Cancer cells break down sugars and produce the metabolic acid lactate at a much higher rate than normal cells. This phenomenon provides a telltale sign that...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Max Planck Institute of Biochemistry
September 21, 2017

Stanford, CA— How do green algae grow so quickly?  Two new collaborations offer insight into how these organisms siphon carbon dioxide from the air for use in photosynthesis, a key factor in their ability to rapidly take over a swimming pool or pond. Understanding this process may someday help researchers improve the growth rate of agricultural crops such as wheat and rice.

In two studies published this week in the journal Cell, a Princeton-led team with collaborators from Carnegie and the Max Planck Institute of Biochemistry reported the first detailed inventory of the cellular compartment called the pyrenoid, which algae use to collect and concentrate carbon dioxide, making the

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 17, 2017

Palo Alto, CA— The red algae called Porphyra and its ancestors have thrived for millions of years in the harsh habitat of the intertidal zone—exposed to fluctuating temperatures, high UV radiation, severe salt stress, and desiccation.

Red algae comprise some of the oldest non-bacterial photosynthetic organisms on Earth, and one of the most-ancient of all multicellular lineages. They are also fundamentally integrated into human culture and economics around the globe. Some red algae play a major role in building coral reefs while others serve as “seaweed” foods that are integral to various societies. Porphyra is included in salads (as are related genera of algae), is called “nori”

June 21, 2017

Palo Alto, CA— Algae dominate the oceans that cover nearly three-quarters of our planet, and produce half of the oxygen that we breathe. And yet fewer than 10 percent of the algae have been formally described in the scientific literature, as noted in a new review co-authored by Carnegie’s Arthur Grossman in Trends in Plant Science.

Algae are everywhere. They are part of crusts on desert surfaces and form massive blooms in lakes and oceans. They range in size from tiny single-celled organisms to giant kelp.

Algae also play crucial roles in human life. People have eaten “seaweed” (large macroalgae) for millennia. But algae can also represent a health hazard when toxic blooms

June 15, 2017

Pew announced the 2017 classes of biomedical scholars, Latin American fellows, and Pew-Stewart Scholars for Cancer Research today. Cesar-Cuevas Velazquez of the Department of Plant Biology Dinneny lab is among 37 researchers selected.

These new researchers join more than 900 biomedical scientists from many different research backgrounds. “The scholars and fellows will gather at Pew’s annual meeting for the next four years to discuss their research, learn from peers in other fields, and form lasting bonds that will help propel and stimulate cutting-edge research, “stated the Pew press release.

Velazquez is a postdoctoral researcher in the Dinneny lab. He received his Ph. D.

No content in this section.

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to achieve broad, durable

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions to genes for which no function had

Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve, share resources. To these ends, she focuses on one-celled, aquatic cyanobacteria, in the lab with model organisms and with organisms in naturally occurring communities.

 Phototaxis is the ability of organisms to move directionally in response to a light source.  Many cyanobacteria exhibit phototaxis, both towards and away from light. The ability to move into optimal light for

It’s common knowledge that light is essential for plants to perform photosynthesis—converting light energy into chemical energy by transforming carbon dioxide and water into sugars for fuel. Plants maximize the process by bending toward the light in a process called phototropism, which is particularly important for germinated seedlings to maximize light capture for growth. Winslow Briggs has been a worldwide leader in unraveling the molecular mechanisms behind this essential plant process.

Over a decade ago Briggs and colleagues discovered and first characterized the photoreceptor family that mediates this directional response and named the two members phototropin 1 and

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman and

Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to produce cells called spores. Each spore divides forming a single set of chromosomes (haploid) --the gametophyte--which produces the sperm and egg cells.

Evans studies how the haploid genome is required for normal egg and sperm function. In flowering plants, the female gametophyte, called the embryo sac, consists of four cell types: the egg cell, the central cell, and two types of supporting