Carnegie Science, Carnegie Institution for Science, Carnegie Institution, Jiaying Zhu
Stanford, CA—Plants are stationary. This means that the way they grow must be highly internally regulated to use the surrounding resources in the most-advantageous way possible. Just imagine if...
Explore this Story
Washington, D.C.--Plant Biology postdoctoral research associate since 2012, Jia-Ying Zhu was awarded the sixth PIE award for her creativity, productivity, being a great team player in research,...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Palo Alto, CA—New work from a joint team of plant biologists and ecologists from Carnegie and Stanford University has uncovered the factor behind an important innovation that makes grasses...
Explore this Story
Stanford, CA—New work from Carnegie’s Shouling Xu and Zhiyong Wang reveals that the process of synthesizing many important master proteins in plants involves extensive modification, or...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Stanford, CA—Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our...
Explore this Story
Stanford, CA—We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are...
Explore this Story
Stanford, CA— A feature thought to make plants sensitive to drought could actually hold the key to them coping with it better, according to new findings published by eLife, from Kathryn Barton...
Explore this Story
Stanford, CA—The Howard Hughes Medical Institute (HHMI) and the Simons Foundation have awarded José Dinneny, of Carnegie’s Department of Plant Biology an HHMI-Simons Faculty...
Explore this Story

Pages

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director...
Explore this Project
Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant...
Explore this Project
Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018. Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants...
Meet this Scientist
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts...
Meet this Scientist
You May Also Like...
Washington, DC—The Carnegie Institution announced today that it is a grant recipient of the Grand Challenges Explorations initiative funded by the Bill & Melinda Gates Foundation. Wolf B. Frommer...
Explore this Story
The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a...
Explore this Story
Carnegie’s Arthur Grossman teamed up with engineers at Stanford University (including Fritz Prinz and graduate students Zubin Huang and Witchukorn Phuthong) to develop atomic force...
Explore this Story

Explore Carnegie Science

May 16, 2019

The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a venture grant for their proposal Carbon-rich Super-Earths: Constraining Internal Structure from Dynamic Compression Experiments. Plant Biology’s Sue Rhee and Global Ecology’s Joe Berry and Jen Johnson were awarded a Venture Grant for their project Thermo-adaptation of Photosynthesis in Extremophilic Desert Plants.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions.

Chlamydomonas
March 21, 2019

Palo Alto, CA—The creation of new library of mutants of the single-celled photosynthetic green alga Chlamydomonas reinhardtii enabled a Carnegie- and Princeton University-led team of plant scientists to identify more than 300 genes that are potentially required for photosynthesis. Photosynthesis is the process by which plants, algae, and some bacteria convert energy from sunlight into carbohydrates—filling our planet’s atmosphere with oxygen as a byproduct.

Their findings are published this week in Nature Genetics.

Chlamydomonas represents a group of algae that are found around the globe in fresh and saltwater, moist soil, and even snow. They are

February 19, 2019

Heather Meyer, a postdoctoral fellow in David Ehrhardt’s Plant Biology lab since 2016, has been awarded Carnegie’s twelfth Postdoctoral Innovation and Excellence Award. These prizes are given to postdocs for their exceptionally creative approaches to science, strong mentoring, and contributing to the sense of campus community. The nominations are made by the departments and are chosen by the Office of the President. The recipients receive a cash prize and are celebrated at an event at their departments.  

Heather initiated a pioneering scientific project to identify the molecular mechanisms that plants use to sense and respond to seasonal temperatures in order to

February 12, 2019

Washington, DC— Carnegie’s Winslow Briggs, a giant in the field of plant biology who explained how seedlings grow toward light, died on February 11 at Stanford University Medical Center. He was 90.

Briggs joined Carnegie as the Director of the Department of Plant Biology in 1973 after teaching both at Harvard University—where he completed his bachelor’s degree, master’s degree, and Ph.D.—and at Stanford University. He held the position for two decades, establishing himself as a global leader in plant genetics and physiology, publishing landmark research on the molecular mechanisms that plants and other organisms use to sense and respond to light

No content in this section.

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in

Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve, share resources. To these ends, she focuses on one-celled, aquatic cyanobacteria, in the lab with model organisms and with organisms in naturally occurring communities.

 Phototaxis is the ability of organisms to move directionally in response to a light source.  Many cyanobacteria exhibit phototaxis, both towards and away from light. The ability to move into optimal light

Evolutionary geneticist Moises Exposito-Alonso joins the Department of Plant Biology as a staff associate in the summer of 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex