Stanford, CA— Once a mother plant releases its embryos to the outside world, they have to survive on their own without family protection. To ensure successful colonization by these vulnerable...
Explore this Story
"I started to wonder if I could design a course that encouraged freshmen to recognize the beauty and wealth of trees on campus? Could I meld my curiosity about the trees and rejuvenate my rusty...
Explore this Story
Stanford, CA— Like humans, plants are surrounded by and closely associated with microbes. The majority of these microbes are beneficial, but some can cause devastating disease. Maintaining the...
Explore this Story
Washington, D.C.—The pervasive plant fiber cellulose, which makes up cell walls, represents most of the biomass on Earth and is used to create everything from textiles and building materials,...
Explore this Story
Carnegie’s Arthur Grossman teamed up with engineers at Stanford University (including Fritz Prinz and graduate students Zubin Huang and  Witchukorn Phuthong) to develop the use of atomic...
Explore this Story
Washington Post gardening columnist, Adrian Higgins, writes about the quest for the perfect tomato and this month's Capital Science Evening speaker, Harry Klee of the University of...
Explore this Story
On SFGate: Carnegie's José Dinneny uses firefly proteins to light up certain plants and reveal root system behavior....
Explore this Story
Stanford, CA— Plants form a vast network of below-ground roots that search soil for needed resources. The structure and function of this root network can be highly adapted to particular...
Explore this Story

Pages

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga ...
Explore this Project
Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is...
Explore this Project
Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts...
Meet this Scientist
Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore...
Meet this Scientist
Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to...
Meet this Scientist
You May Also Like...
Stanford, CA—Everyone who took high school biology learned that photosynthesis is the process by which plants, algae and select bacteria transform the Sun's energy into chemical energy during the...
Explore this Story
Algae are everywhere. They are part of crusts on desert surfaces and form massive blooms in lakes and oceans. They range in size from tiny single-celled organisms to giant kelp. Algae also play...
Explore this Story
Washington, D.C.—Carnegie announced today that it will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables...
Explore this Story

Explore Carnegie Science

February 12, 2019

Washington, DC— Carnegie’s Winslow Briggs, a giant in the field of plant biology who explained how seedlings grow toward light, died on February 11 at Stanford University Medical Center. He was 90.

Briggs joined Carnegie as the Director of the Department of Plant Biology in 1973 after teaching both at Harvard University—where he completed his bachelor’s degree, master’s degree, and Ph.D.—and at Stanford University. He held the position for two decades, establishing himself as a global leader in plant genetics and physiology, publishing landmark research on the molecular mechanisms that plants and other organisms use to sense and respond to light

Sue Rhee, Thomas Clandinin and Miriam B. Goodman discuss the NeuroPlant project over a tobacco plant in the greenhouse. (Image credit: L.A. Cicero)
January 22, 2019

Stanford, CA—For millennia, humanity has used medicinal plants and plant-based compounds to treat a variety of neurological ailments including epilepsy, mania, migraines, and bipolar disorder. Now a team of researchers from Carnegie and Stanford University is using microscopic worms to understand what these plant-derived molecules are and how they affect the brain’s biochemistry.

Called the NeuroPlant project, these efforts could lead to new, more efficient ways to develop drugs to treat a variety of neurological and psychiatric diseases in humans. Their work is funded by a Big Ideas grant from the Wu Tsai Neurosciences Institute.

“We’re interested

A bright field image of the anemone Aiptasia populated with its symbiotic algae.
December 6, 2018

Stanford, CA—How much of the ability of a coral reef to withstand stressful conditions is influenced by the type of algae that the corals hosts?

Corals are marine invertebrates from the phylum called cnidarians that build large exoskeletons from which colorful reefs are constructed. But this reef-building is only possible because of a mutually beneficial relationship between the coral and various species of single-celled algae called dinoflagellates that live inside the cells of coral polyps.

The algae are photosynthetic—meaning capable of converting the Sun’s energy into chemical energy for food, just like plants. And the exchange of nutrients between the

Devaki Bhaya
October 5, 2018

Palo Alto, CA—Carnegie’s Devaki Bhaya has been named a Fellow of the California Academy of Sciences. She is one of 14 new members selected as “partners and collaborators in the pursuit of the Academy mission to explore, explain, and sustain life.”

At Carnegie’s Department of Plant Biology Bhaya studies how photosynthetic microorganisms are affected by environmental stressors such as light, low nutrient availability, and viruses. Her research on speciation in the microbial mats of Yellowstone National Park is providing insights into how microbial populations communicate, evolve, and share resources. These findings offered a first glimpse into the

No content in this section.

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an

Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman