Carnegie Science, Carnegie Institution for Science, Carnegie Institution, Chlamydomonas, Pyrenoid, EPYC1
Stanford, CA— Algae may hold the key to feeding the world’s burgeoning population. Don’t worry; no one is going to make you eat them. But because they are more efficient than most...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Stanford, CA— Four additional members of Stanford University’s faculty have been named Honorary Adjunct Staff Scientists at Carnegie’s Department of Plant Biology. Stanford’s...
Explore this Story
Carnegie Science, Carnegie Institution, CRISPR, CRISPR/Cas, CRISPR/Cas9, Devaki Bhaya
Stanford, CA— You’ve probably seen news stories about the highly lauded, much-discussed genome editing system CRISPR/Cas9. But did you know the system was actually derived from bacteria,...
Explore this Story
Stanford, CA— During the daytime, plants convert the Sun’s energy into sugars using photosynthesis, a complex, multi-stage biochemical process. New work from a team including Carnegie...
Explore this Story
Washington, DC— More than 1,000 scientists from nonprofit, corporate, academic, and private institutions say public doubts about genetically modified food crops are hindering the next Green...
Explore this Story
Stanford, CA—Carnegie’s Alexander Jones will receive the Tansley Medal for Excellence in Plant Science. The honor includes publishing a short review, an editorial written about his work...
Explore this Story
Stanford, CA—Everyone who took high school biology learned that photosynthesis is the process by which plants, algae and select bacteria transform the Sun's energy into chemical energy...
Explore this Story
Stanford, CA— Once a mother plant releases its embryos to the outside world, they have to survive on their own without family protection. To ensure successful colonization by these vulnerable...
Explore this Story

Pages

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga ...
Explore this Project
Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20%...
Meet this Scientist
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018. Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants...
Meet this Scientist
You May Also Like...
AudioStanford, CA— A team of researchers studying a flowering plant has zeroed in on the way cells manage external signals about prevailing conditions, a capability that is essential for cells to...
Explore this Story
The red algae called Porphyra and its ancestors have thrived for millions of years in the harsh habitat of the intertidal zone—exposed to fluctuating temperatures, high UV radiation,...
Explore this Story
Washington, D.C. --The Arabidopsis Information Resource (TAIR), a database of genetic and molecular biology data for the laboratory plant Arabidopsis thaliana, is one of the most widely used plant...
Explore this Story

Explore Carnegie Science

Moises Exposito-Alonso
March 18, 2020

Washington, DC— Carnegie evolutionary geneticist Moises Exposito-Alonso was named a member of the 2020 class of Forbes’ 30 Under 30 Europe list in science and healthcare. 

He was recognized for his lab’s pioneering use of genomic techniques to understand how plant species will evolve and keep pace with a changing climate. 

Out of the thousands of nominees, the 30 finalists in each of the 10 categories comprise “the world’s most impactful community of young entrepreneurs and game-changers,” said the publication in announcing his selection.  

“Growing up in southern Spain, I saw how Mediterranean

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

Moises Exposito-Alonso
February 28, 2020

Palo Alto, CA— Carnegie’s Moises Exposito-Alonso is one of four recipients of the American Society of Naturalists’ Jasper Loftus-Hills Young Investigator Award in recognition of “outstanding and promising work” by individuals who are within three years of completing their Ph.D or in their final year of graduate school.

Exposito-Alonso is an evolutionary geneticist who joined Carnegie last September as a staff associate, a prestigious position designed for early career scientists who are ready to independently deploy creative approaches to challenging research projects. 

His lab is pioneering the use of genomics to ask whether species will

A fluorescence image of the sea anemone Exaiptasia, courtesy of Tingting Xiang
January 8, 2020

Stanford, CA— Corals depend on their symbiotic relationships with the algae that they host. But how do they keep algal population growth in check? The answer to this fundamental question could help reefs survive in a changing climate.

New work published in Nature Communications by a team including Carnegie’s Tingting Xiang, Sophie Clowez, Rick Kim, and Arthur Grossman indicates how sea anemones, which are closely related to coral, control the size of the algal populations that reside within their tissue.  

Like corals, anemones host photosynthetic algae, which can convert the Sun’s energy into chemical energy. An alga shares some of the sugars

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve, share resources. To these ends, she focuses on one-celled, aquatic cyanobacteria, in the lab with model organisms and with organisms in naturally occurring communities.

 Phototaxis is the ability of organisms to move directionally in response to a light source.  Many cyanobacteria exhibit phototaxis, both towards and away from light. The ability to move into optimal light

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman

Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex