A plant's roots grow and spread into the soil, taking up necessary water and minerals. The tip of a plant's root is a place of active cell division followed by cell elongation, with different...
Explore this Story
Stanford, CA—A plant's roots grow and spread into the soil, taking up necessary water and minerals. The tip of a plant's root is a place of active cell division followed by cell...
Explore this Story
Stanford, CA— Inside every seed is the embryo of a plant, and in most cases also a storage of food needed to power initial growth of the young seedling. A seed consists mainly of carbohydrates...
Explore this Story
Stanford, CA—Photosynthesis is the process by which plants convert energy from the sunlight into chemical energy in the form of sugars. These sugars are used by plants to grow and function, as...
Explore this Story
Washington, D.C.—Carnegie announced today that it will receive Phase II funding through Grand Challenges...
Explore this Story
Stanford, CA—Photosynthesis is probably the most well-known aspect of plant biochemistry. It enables plants, algae, and select bacteria to transform the energy from sunlight during the daytime...
Explore this Story
Stanford, CA— Proteins are the machinery that accomplishes almost every task in every cell in every living organism. The instructions for how to build each protein are written into a cell...
Explore this Story
Stanford, CA—When it comes to cellular architecture, function follows form. Plant cells contain a dynamic cytoskeleton which is responsible for directing cell growth, development, movement, and...
Explore this Story

Pages

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga ...
Explore this Project
Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore...
Meet this Scientist
Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018. Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants...
Meet this Scientist
Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to...
Meet this Scientist
You May Also Like...
Carnegie Plant Biology Acting Director Sue Rhee and staff scientist José Dinneny and their labs are part of a research effort led by The Donald Danforth Plant Science...
Explore this Story
The red algae called Porphyra and its ancestors have thrived for millions of years in the harsh habitat of the intertidal zone—exposed to fluctuating temperatures, high UV radiation,...
Explore this Story
For millennia, humanity has used medicinal plants and plant-based compounds to treat a variety of neurological ailments including epilepsy, mania, migraines, and bipolar disorder. Now a team of...
Explore this Story

Explore Carnegie Science

Moises Exposito-Alonso
March 18, 2020

Washington, DC— Carnegie evolutionary geneticist Moises Exposito-Alonso was named a member of the 2020 class of Forbes’ 30 Under 30 Europe list in science and healthcare. 

He was recognized for his lab’s pioneering use of genomic techniques to understand how plant species will evolve and keep pace with a changing climate. 

Out of the thousands of nominees, the 30 finalists in each of the 10 categories comprise “the world’s most impactful community of young entrepreneurs and game-changers,” said the publication in announcing his selection.  

“Growing up in southern Spain, I saw how Mediterranean

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

Moises Exposito-Alonso
February 28, 2020

Palo Alto, CA— Carnegie’s Moises Exposito-Alonso is one of four recipients of the American Society of Naturalists’ Jasper Loftus-Hills Young Investigator Award in recognition of “outstanding and promising work” by individuals who are within three years of completing their Ph.D or in their final year of graduate school.

Exposito-Alonso is an evolutionary geneticist who joined Carnegie last September as a staff associate, a prestigious position designed for early career scientists who are ready to independently deploy creative approaches to challenging research projects. 

His lab is pioneering the use of genomics to ask whether species will

A fluorescence image of the sea anemone Exaiptasia, courtesy of Tingting Xiang
January 8, 2020

Stanford, CA— Corals depend on their symbiotic relationships with the algae that they host. But how do they keep algal population growth in check? The answer to this fundamental question could help reefs survive in a changing climate.

New work published in Nature Communications by a team including Carnegie’s Tingting Xiang, Sophie Clowez, Rick Kim, and Arthur Grossman indicates how sea anemones, which are closely related to coral, control the size of the algal populations that reside within their tissue.  

Like corals, anemones host photosynthetic algae, which can convert the Sun’s energy into chemical energy. An alga shares some of the sugars

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to produce cells called spores. Each spore divides forming a single set of chromosomes (haploid) --the gametophyte--which produces the sperm and egg cells.

Evans studies how the haploid genome is required for normal egg and sperm function. In flowering plants, the female gametophyte, called the embryo sac, consists of four cell types: the egg cell, the central cell, and two types of

Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20% of what its genes do and how or why they do it. And understanding this evolution can help develop new crop strains to adapt to climate change.  

Sue Rhee wants to uncover the molecular mechanisms underlying adaptive traits in plants to understand how these traits evolved. A bottleneck has been the limited understanding of the functions of most plant genes. Rhee’s group is

Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an