Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Donald Danforth Plant Science Center
Stanford, CA— Carnegie Plant Biology Acting Director Sue Rhee and staff scientist...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Max Planck Institute of Biochemistry
Stanford, CA— How do green algae grow so quickly?  Two new collaborations offer insight into how these organisms siphon carbon dioxide from the air for use in photosynthesis, a key factor...
Explore this Story
Palo Alto, CA— The red algae called Porphyra and its ancestors have thrived for millions of years in the harsh habitat of the intertidal zone—exposed to fluctuating temperatures, high UV...
Explore this Story
Palo Alto, CA— Algae dominate the oceans that cover nearly three-quarters of our planet, and produce half of the oxygen that we breathe. And yet fewer than 10 percent of the algae have been...
Explore this Story
Pew announced the 2017 classes of biomedical scholars, Latin American fellows, and Pew-Stewart Scholars for Cancer Research today. Cesar-Cuevas Velazquez of the Department of...
Explore this Story
Carnegie Science, Carnegie Institution for Science, Carnegie Institution, Jiaying Zhu
Stanford, CA—Plants are stationary. This means that the way they grow must be highly internally regulated to use the surrounding resources in the most-advantageous way possible. Just imagine if...
Explore this Story
Washington, D.C.--Plant Biology postdoctoral research associate since 2012, Jia-Ying Zhu was awarded the sixth PIE award for her creativity, productivity, being a great team player in research,...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Palo Alto, CA—New work from a joint team of plant biologists and ecologists from Carnegie and Stanford University has uncovered the factor behind an important innovation that makes grasses...
Explore this Story

Pages

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga ...
Explore this Project
Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore...
Meet this Scientist
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018. Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants...
Meet this Scientist
You May Also Like...
Stanford, CA—Photosynthesis is the process by which plants convert energy from the sunlight into chemical energy in the form of sugars. These sugars are used by plants to grow and function, as well...
Explore this Story
Carnegie plant biologists Sue Rhee and David Ehrhardt will lead one of 25 teams awarded a total of $64 million this week by the U.S. Department of Energy to pursue genomic research of...
Explore this Story
AudioStanford, CA—All living cells are held together by membranes, which provide a barrier to the transport of nutrients. They are also the communication platform connecting the outside world to the...
Explore this Story

Explore Carnegie Science

Greenhouse in Germany where Exposito-Alonso did research.
April 10, 2020

Palo Alto, CA— Carnegie’s Moises Exposito-Alonso was selected for the Heidelberg Academy of Science’s Karl Freudenberg Prize in recognition of outstanding early career achievements in the natural sciences. The prize comes with a personal 10,000 Euro award.

Representing the German state of Baden-Württemberg, the academy honors several professors under the age of 40 with endowed prizes each year, including six in 2020. All of the recipients will give public presentations of their work, with dates to be announced. An evolutionary geneticist, Exposito-Alonso received his doctorate in 2018 from the Max Planck Institute for Developmental Biology in Tübigen.

Moises Exposito-Alonso
March 18, 2020

Washington, DC— Carnegie evolutionary geneticist Moises Exposito-Alonso was named a member of the 2020 class of Forbes’ 30 Under 30 Europe list in science and healthcare. 

He was recognized for his lab’s pioneering use of genomic techniques to understand how plant species will evolve and keep pace with a changing climate. 

Out of the thousands of nominees, the 30 finalists in each of the 10 categories comprise “the world’s most impactful community of young entrepreneurs and game-changers,” said the publication in announcing his selection.  

“Growing up in southern Spain, I saw how Mediterranean

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

Moises Exposito-Alonso
February 28, 2020

Palo Alto, CA— Carnegie’s Moises Exposito-Alonso is one of four recipients of the American Society of Naturalists’ Jasper Loftus-Hills Young Investigator Award in recognition of “outstanding and promising work” by individuals who are within three years of completing their Ph.D or in their final year of graduate school.

Exposito-Alonso is an evolutionary geneticist who joined Carnegie last September as a staff associate, a prestigious position designed for early career scientists who are ready to independently deploy creative approaches to challenging research projects. 

His lab is pioneering the use of genomics to ask whether species will

May 28, 2020

Join us to learn about how scientists define what it means to be alive from Carnegie Plant Biology staff scientist Devaki Bhaya and Carngie Earth and Planets Laboratory staff scientist Andrew Steele. This is the fifth virtual program in a series of online conversations with several of our exciting investigators.  

How do viruses and prions fit into our definition of life? What can extremophiles living in some of Earth's most inhospitable environments teach us about how life originated on this planet? Could Mars have once hosted life and, if so, what's the best way to find evidence of its existence? Bhaya's research on the hot spring

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an

Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve, share resources. To these ends, she focuses on one-celled, aquatic cyanobacteria, in the lab with model organisms and with organisms in naturally occurring communities.

 Phototaxis is the ability of organisms to move directionally in response to a light source.  Many cyanobacteria exhibit phototaxis, both towards and away from light. The ability to move into optimal light