Stanford, CA—Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients.  New work from Carnegie and Stanford University’s José Dinneny shows that one...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Stanford University
Washington, DC— Without eyes, ears, or a central nervous system, plants can perceive the direction of environmental cues and respond to ensure their survival. For example, roots need to extend...
Explore this Story
Science News magazine has selected José Dinneny, of Carnegie’s Department of Plant Biology, as one of ten young scientists to watch in 2017. The researchers were selected because they are likely to...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Donald Danforth Plant Science Center
Stanford, CA— Carnegie Plant Biology Acting Director Sue Rhee and staff scientist...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Max Planck Institute of Biochemistry
Stanford, CA— How do green algae grow so quickly?  Two new collaborations offer insight into how these organisms siphon carbon dioxide from the air for use in photosynthesis, a key factor in their...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Palo Alto, CA— The red algae called Porphyra and its ancestors have thrived for millions of years in the harsh habitat of the intertidal zone—exposed to fluctuating temperatures, high UV radiation,...
Explore this Story
Palo Alto, CA— Algae dominate the oceans that cover nearly three-quarters of our planet, and produce half of the oxygen that we breathe. And yet fewer than 10 percent of the algae have been formally...
Explore this Story
Pew announced the 2017 classes of biomedical scholars, Latin American fellows, and Pew-Stewart Scholars for Cancer Research today. Cesar-Cuevas Velazquez of the Department of Plant Biology Dinneny...
Explore this Story

Pages

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is...
Explore this Project
Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii....
Explore this Project
Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf...
Explore this Project
Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell...
Meet this Scientist
Steroids are important hormones in both animals and plants. They bulk up plants just as they do human athletes, but the pathway of molecular signals that tell the genes to boost growth and development is more complex in plant cells than in animal cells. Unlike animals, plants do not have glands to...
Meet this Scientist
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching...
Meet this Scientist
You May Also Like...
Plants have a complex system of hormones that guide their growth and maximize their ability to take advantage of the environment. One mastermind hormone is called brassinosteroid. It can turn on or...
Explore this Story
Audio Stanford, CA—Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about...
Explore this Story
Stanford, CA— Along with photosynthesis, the plant cell wall is one of the features that most set plants apart from animals. A structural molecule called cellulose is necessary for the manufacture of...
Explore this Story

Explore Carnegie Science

February 16, 2018

Stanford, CA—Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients.  New work from Carnegie and Stanford University’s José Dinneny shows that one of these challenges, salinity, can cause root cells to explode if the risk is not properly sensed. The findings, published by Current Biology, could help scientists improve agricultural productivity in saline soils, which occur across the globe and reduce crop yields.

Salts build up in soils from natural causes, such as sea spray, or can be introduced as a consequence of irrigation and poor land management. Salinity has deleterious effects on plant health and limits crop yields,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Stanford University
January 9, 2018

Washington, DC— Without eyes, ears, or a central nervous system, plants can perceive the direction of environmental cues and respond to ensure their survival.

For example, roots need to extend through the maze of nooks and crannies in the soil toward sources of water and nutrients. The various ways that plants guide this branching to take advantage of their environment is of great interest to scientists and of potential use by farmers in need of crops that produce more food with fewer resources.

Carnegie and Stanford University biologist José Dinneny has spent years studying how root growth responds to water, particularly through a phenomenon called hydropatterning, which

October 4, 2017

Science News magazine has selected José Dinneny, of Carnegie’s Department of Plant Biology, as one of ten young scientists to watch in 2017. The researchers were selected because they are likely to make big discoveries. The investigators are spotlighted in the October 14 edition of Science News available online today at www.sciencenews.org/SN10.

Dinneny looks at the mechanisms plants use to sense water availability and survive stressful conditions such as drought and high salinity. He investigates developmental pathways and molecular genetic mechanisms involved in shaping the plant to suit the environment. His work has included the processes of water-stress responses in plants at

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Donald Danforth Plant Science Center
October 2, 2017

Stanford, CA— Carnegie Plant Biology Acting Director Sue Rhee and staff scientist José Dinneny and their labs are part of a research effort led by The Donald Danforth Plant Science Center, one of the world’s largest independent plant science institutes, which today announced a 5-year, $16 million grant from the U.S. Department of Energy.

Building on earlier research using the often-studied model grass called green foxtail (Setaria viridis), this project will identify new genes and pathways that contribute to photosynthesis and enhanced water-use efficiency. The team will then deploy these genes using tools from the emerging field of synthetic biology to accelerate development of

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions to genes for which no function had

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to achieve broad, durable

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the foundation for developing crops for the changing climate.

The Dinneny  lab focuses on understanding how developmental processes such as cell-type specification regulate responses to environmental change. Most studies have considered the organ or even the whole organism as a single responsive unit and ignore the potential diversity of responses by the various cell-types composing an organism. Dinneny has

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in repeating units. The structure responsible for

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman and

Steroids are important hormones in both animals and plants. They bulk up plants just as they do human athletes, but the pathway of molecular signals that tell the genes to boost growth and development is more complex in plant cells than in animal cells. Unlike animals, plants do not have glands to produce and secrete hormones. Rather, each plant cell has the ability to generate hormones. Another difference is that animal cells typically have receptor molecules that respond to select steroids located within a cell's nucleus. In plants, steroid receptors are anchored to the outside surface of a cell’s outer membrane—the membrane that delineates a cell as a single unit.

Zhiyong Wang