For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive team of researchers who investigate the basics of climate change. Field has authored more than 200 scientific publications and is cochair of the U. N.'s Intergovernmental Panel on Climate Change (IPCC) Working Group 2. The IPCC Fourth Assessment, for which Field was a coordinating author, was published in 2007. He was coeditor of the March 2012 IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), and he  is overseeing the Working Group 2 report on the predicted impacts of climate change for the IPCC Fifth Assessment, published in 2014.

Field routinely testifies before U. S. Congressional committees and is a world-renowned “go to” expert on climate science and sustainability. He is sought by major media outlets to explain his work and comment on the work of other researchers. He interviews have appeared in USA Today, The New York Times, CNN and leading news and science radio programs.

Field’s research looks at the interactions among the climate, the carbon cycle, and ecosystem processes, from the molecular to the global scale. His work includes major field experiments on responses of California grassland to multi-factor global change, integrative studies on the global carbon cycle, and assessments of impacts of climate change on agriculture. His model research includes studies on the global distribution of carbon sources and sinks and studies on environmental consequences of expanding reliance on biomass for energy supply.

Field received his A.B in biology from Harvard and his Ph.D. in biology from Stanford University. In 2013 he was awarded one of Germany’s most prestigious prizes, the Max Planck Research Prize. He is a Fellow of the Ecological Society of America and was elected Member, US National Academy of Sciences in 2001. In 2000, he was selected by the Ecological Society of America as the Aldo Leopold Fellow among other honors. Learn more at http://dge.stanford.edu/labs/fieldlab/

Scientific Area: 

Explore Carnegie Science

Greg Asner Receives Heinz Award
September 14, 2017

Carnegie staff scientist Greg Asner has been awarded the 22nd Heinz Award for the Environment,* “ for developing ultra-high-resolution imaging technology that provides unprecedented detail on the biodiversity and health of the world’s forests and coral reefs, and the impact of deforestation, land degradation and climate change.” The annual award comes with a cash award of $250,000.

Asner was hired in 2001 as the Department of Global Ecology’s first staff scientist. Since coming to Carnegie, Asner has pioneered new methods for investigating tropical deforestation, degradation, ecosystem diversity, invasive species, carbon emissions, climate change, and much more using satellite and

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, William and Leander Anderegg
August 9, 2017

Washington, DC— The amount of time it takes for an ecosystem to recover from a drought is an important measure of a drought’s severity. During the 20th century, the total area of land affected by drought increased, and longer recovery times became more common, according to new research published by Nature by a group of scientists including Carnegie’s Anna Michalak and Yuanyuan Fang.

Scientists predict that more-severe droughts will occur with greater frequency in the 21st century, so understanding how ecosystems return to normal again will be crucial to preparing for the future. However, the factors that influence drought recovery have been largely unknown until now.

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA Earth Observatory
July 27, 2017

Washington, DC— If climate change is not curbed, increased precipitation could substantially overload U.S. waterways with excess nitrogen, according to a new study from Carnegie’s Eva Sinha and Anna Michalak and Princeton University’s Venkatramani Balaji published by Science. Excess nutrient pollution increases the likelihood of events that severely impair water quality. The study found that impacts will be especially strong in the Midwest and Northeast.

Rainfall and other precipitation washes nutrients from human activities like agriculture and fossil fuel combustion into rivers and lakes. When these waterways get overloaded with nutrients, a phenomenon called “eutrophication,”

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Ken Caldeira
July 24, 2017

Washington, DC— Geoengineering is a catch-all term that refers to various theoretical ideas for altering Earth’s energy balance to combat climate change. New research from an international team of atmospheric scientists published by Geophysical Research Letters investigates for the first time the possibility of using a “cocktail” of geoengineering tools to reduce changes in both temperature and precipitation caused by atmospheric greenhouse gases.

Carbon dioxide emissions from the burning of coal, oil, and gas not only cause the Earth to get hotter, they also affect weather patterns around the world. Management approaches need to address both warming and changes in the amount of

No content in this section.

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

Ken

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy evolution. Blanc conducts a series of research projects on the properties of young and distant galaxies, the large-scale structure of the universe, the nature of Dark Energy—the mysterious repulsive force, the process of star formation at galactic scales, and the measurement of chemical abundances in galaxies.

To conduct this work, he takes a multi-wavelength approach including observations in the UV,

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a