Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to produce cells called spores. Each spore divides forming a single set of chromosomes (haploid) --the gametophyte--which produces the sperm and egg cells.

Evans studies how the haploid genome is required for normal egg and sperm function. In flowering plants, the female gametophyte, called the embryo sac, consists of four cell types: the egg cell, the central cell, and two types of supporting cells. Two sperm cells from the male gametophyte—the pollen—fertilize the egg and central cells to produce the embryo and endosperm, respectively. The embryo and endosperm together make up the seed. The embryo develops into the new plant and the endosperm contains the nutritive material used by the embryo and seedling; it comprises the bulk of the grain weight in cereals such as wheat, rice, and maize.

Proper seed development depends on genes from the embryo and endosperm and from genes from the maternal embryo sac and sporophyte. Using maize, Evans is developing tools for identifying genes that are required for normal embryo sac development and function. He is also investigation the factors that prevent maize and it’s wild cousin teosinte from cross pollinating, and he is identifying  genes important for gametophyte function. For more see  https://dpb.carnegiescience.edu/labs/evans-lab

Scientific Area: 

Explore Carnegie Science

Winslow Briggs by Robin Kempster, courtesy Carnegie Institution for Science.
August 6, 2019

Washington, DC—The American Society of Plant Biologists (ASPB) will name a mentorship award in honor of legendary Carnegie plant scientist Winslow Briggs, who died in February. 

The ASPB is a professional society dedicated to the advancement of plant sciences.  Briggs served as its president in 1975.  He also received the society’s Stephen Hales Prize for noteworthy contributions to the field in 1994 and its Adolph E. Gude, Jr. Award for his service to the plant science community in 2007.

Briggs joined Carnegie as the Director of the Department of Plant Biology in 1973 after teaching both at Harvard University—where he completed his bachelor

Plant Cell Atlas logo
July 18, 2019

Palo Alto, CA—Do plant scientists hold the key to saving vulnerable populations in a changing climate? How should plant researchers prepare to deploy their knowledge to maintain food security in the future—as well as to promote renewable energy, sequester carbon pollution from the atmosphere, and even synthesize medicine?

Between 2030 and 2050, climate change will cause about a quarter of a million deaths each year through malnutrition, infectious disease, and extreme heat, according to a 2018 World Health Organization report. Economic losses related to climate change are projected to be several hundred billion dollars a year in the U.S. alone by 2090. And we are

Sea anemone Aiptasia pallida. Image courtesy of Tingting Xiang.
June 19, 2019

Palo Alto, CA—What factors govern algae’s success as “tenants” of their coral hosts both under optimal conditions and when oceanic temperatures rise? A Victoria University of Wellington-led team of experts that includes Carnegie’s Arthur Grossman investigates this question.

Corals are marine invertebrates that build large exoskeletons from which colorful reefs are constructed. But this reef-building is only possible because of a mutually beneficial relationship between the coral and various species of single-celled algae called dinoflagellates that live inside the cells of coral polyps.

These algae are photosynthetic, which means that like

A teosinte plant growing in a corn field on the Stanford University campus, courtesy of Yongxian Lu.
May 24, 2019

Palo Alto, CA— Determining how one species becomes distinct from another has been a subject of fascination dating back to Charles Darwin. New research led by Carnegie’s Matthew Evans and published in Nature Communications elucidates the mechanism that keeps maize distinct from its ancient ancestor grass, teosinte.

Speciation requires isolation. Sometimes this isolation is facilitated by geography, such as mountains chains or islands that divide two populations and prevent them from interbreeding until they become different species. But in other instances, the barriers separating species are physiological factors that prevent them from successfully mating, or from

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be