Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

 As principal investigator of the Deep Carbon Observatory, Hazen oversees the primary mission of work to promote the transformational understanding of the chemical and biological roles of carbon in Earth's interior—a program in part supported by the Sloan Foundation.

Astrobiology is the search for the origin, distribution, and future of life in the universe. Hazen and the Carnegie team have explored the hypothesis that hydrothermal systems on planets and moons might have contributed to the formation of organic molecules, and thus the origin of life, and they have looked at the cosmochemistry of carbon, the essential element of life.

In work on mineral-molecule interactions, it turns out that the origin of life’s biochemicals have “handedness,” like left and right handiness in people. Hazen and team believe that these so-called chiral mineral surfaces may have played a significant role in the selection and concentration of molecules necessary for life.

Although minerals are necessary for essential tasks, science has assumed that the mineral species found on Earth today are much the same as they were during Earth’s first 550 million years—the Hadean Eon—when life emerged. Hazen found this not to be true. He compiled a list of every plausible mineral species on the Hadean Earth and concludes that no more than 420 different minerals—about 8 percent of the nearly 5,000 species found on Earth today—would have been present at or near Earth’s surface.

 Field observations of microbes recovered from deep drill cores, deep mines, and the ocean floor, coupled with laboratory investigations, reveal that microbial life can exist at conditions of extreme temperatures (to above 110ºC) and pressures (to > 10,000 atmospheres) previous thought impossible. Hazen is interested in research on microbes at such extreme conditions. He also explores the factors that promote the emergence of complex evolving systems.

Hazen received both has B.S. and  S.M in Earth science from MIT and his Ph. D. from Harvard University ,where he was also a research assistant and teaching fellow. He joined the scientific staff at Carnegie in 1978. For more see

Scientific Area: 

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Bradley Peters
February 27, 2018

Washington, DC—Plumes of hot magma from the volcanic hotspot that formed Réunion Island in the Indian Ocean rise from an unusually primitive source deep beneath the Earth’s surface, according to new work in Nature from Carnegie’s Bradley Peters, Richard Carlson, and Mary Horan along with James Day of the Scripps Institution of Oceanography.

Réunion marks the present-day location of the hotspot that 66 million years ago erupted the Deccan Traps flood basalts, which cover most of India and may have contributed to the extinction of the dinosaurs. Flood basalts and other hotspot lavas are thought to originate from different portions of Earth’s deep interior than most volcanoes at

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Miki Nakajima and Dave Stevenson
February 26, 2018

Washington, DC—It’s amazing what a difference a little water can make.

The Moon formed between about 4.4 and 4.5 billion years ago when an object collided with the still-forming proto-Earth. This impact created a hot and partially vaporized disk of material that rotated around the baby planet, eventually cooling and accreting into the Moon.

For years, scientists thought that in the aftermath of the collision hydrogen dissociated from water molecules and it and other elements that have low boiling temperatures, so-called “volatile elements,” escaped from the disk and were lost to space. This would lead to a dry and volatile element-depleted Moon, which seemed to be

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, courtesy of NASA/JPL, slightly modified by Jonathan Gagné.
February 26, 2018

Washington, DC— Brown dwarfs, the larger cousins of giant planets, undergo atmospheric changes from cloudy to cloudless as they age and cool. A team of astronomers led by Carnegie’s Jonathan Gagné measured for the first time the temperature at which this shift happens in young brown dwarfs. Their findings, published by The Astrophysical Journal Letters, may help them better understand how gas giant planets like our own Solar System’s Jupiter evolved.

Brown dwarfs are too small to sustain the hydrogen fusion process that fuels stars and allows them to remain hot and bright for a long time. After formation, brown dwarfs slowly cool down and contract over time—at some point shifting

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Smithsonian Institution, Colin Jackson
January 24, 2018

Washington, DC— Plumes of hot rock surging upward from the Earth’s mantle at volcanic hotspots contain evidence that the Earth’s formative years may have been even more chaotic than previously thought, according to new work from a team of Carnegie and Smithsonian scientists published in Nature.

It is well understood that Earth formed from the accretion of matter surrounding the young Sun. Eventually the planet grew to such a size that denser iron metal sank inward, to form the beginnings of the Earth’s core, leaving the silicate-rich mantle floating above.

But new work from a team led by Carnegie’s Yingwei Fei and Carnegie and the Smithsonian’s Colin Jackson argues that

No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed by four years at the University of California,


Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two years,

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines,

Guoyin Shen's research interests lie in the quest to establish and to examine models for explaining and controlling the behavior of materials under extreme conditions. His research activities include investigation of phase transformations and melting lines in molecular solids, oxides and metals; polyamorphism in liquids and amorphous materials; new states of matter and their emergent properties under extreme conditions; and the development of enabling high-pressure synchrotron techniques for advancing compression science. 

He obtained a Ph.D. in mineral physics from Uppsala University, Sweden in 1994 and a B.S. in geochemistry from Zhejiang University, China in 1982. For more

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in Canada.

Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy evolution. Blanc conducts a series of research projects on the properties of young and distant galaxies, the large-scale structure of the universe, the nature of Dark Energy—the mysterious repulsive force, the process of star formation at galactic scales, and the measurement of chemical abundances in galaxies.

To conduct this work, he takes a multi-wavelength approach including observations in the UV,

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.