Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

 As principal investigator of the Deep Carbon Observatory, Hazen oversees the primary mission of work to promote the transformational understanding of the chemical and biological roles of carbon in Earth's interior—a program in part supported by the Sloan Foundation.

Astrobiology is the search for the origin, distribution, and future of life in the universe. Hazen and the Carnegie team have explored the hypothesis that hydrothermal systems on planets and moons might have contributed to the formation of organic molecules, and thus the origin of life, and they have looked at the cosmochemistry of carbon, the essential element of life.

In work on mineral-molecule interactions, it turns out that the origin of life’s biochemicals have “handedness,” like left and right handiness in people. Hazen and team believe that these so-called chiral mineral surfaces may have played a significant role in the selection and concentration of molecules necessary for life.

Although minerals are necessary for essential tasks, science has assumed that the mineral species found on Earth today are much the same as they were during Earth’s first 550 million years—the Hadean Eon—when life emerged. Hazen found this not to be true. He compiled a list of every plausible mineral species on the Hadean Earth and concludes that no more than 420 different minerals—about 8 percent of the nearly 5,000 species found on Earth today—would have been present at or near Earth’s surface.

 Field observations of microbes recovered from deep drill cores, deep mines, and the ocean floor, coupled with laboratory investigations, reveal that microbial life can exist at conditions of extreme temperatures (to above 110ºC) and pressures (to > 10,000 atmospheres) previous thought impossible. Hazen is interested in research on microbes at such extreme conditions. He also explores the factors that promote the emergence of complex evolving systems.

Hazen received both has B.S. and  S.M in Earth science from MIT and his Ph. D. from Harvard University ,where he was also a research assistant and teaching fellow. He joined the scientific staff at Carnegie in 1978. For more see

Scientific Area: 

Explore Carnegie Science

Earth's magnetic field shields it from ionizing particles
July 6, 2020

Washington, DC— How did the chemical makeup of our planet’s core shape its geologic history and habitability?

Life as we know it could not exist without Earth’s magnetic field and its ability to deflect dangerous ionizing particles from the solar wind and more far-flung cosmic rays. It is continuously generated by the motion of liquid iron in Earth’s outer core, a phenomenon called the geodynamo.

Despite its fundamental importance, many questions remain unanswered about the geodynamo’s origin and the energy sources that have sustained it over the millennia.

New work from an international team of researchers, including current and former

April 15, 2020

Washington, DC— Carnegie mineralogist Robert Hazen was inducted last month as a foreign member of the Russian Academy of Sciences—the nation’s highest-level scientific society, originally founded by Peter the Great. This is a rare honor for an American researcher.

The ceremony, originally scheduled for the end of March, was postponed by the COVID-19 pandemic.

A Staff Scientist at Carnegie’s Earth and Planets Laboratory, Hazen pioneered the concept of mineral evolution—linking an explosion in mineral diversity to the rise of life on Earth—and developed  the idea of mineral ecology—which analyzes the spatial distribution of the

Comparing carbon's compatibility with silicates and with iron
March 31, 2020

Washington, DC— Carbon is essential for life as we know it and plays a vital role in many of our planet’s geologic processes—not to mention the impact that carbon released by human activity has on the planet’s atmosphere and oceans. Despite this, the total amount of carbon on Earth is a mystery, because much of it remains inaccessible in the planet’s depths.  

New work published this week in Proceedings of the National Academy of Sciences reveals how carbon behaved during Earth’s violent formative period. The findings can help scientists understand how much carbon likely exists in the planet’s core and the contributions it could make

 Illustration of DS Tuc AB by M. Weiss, CfA.
March 9, 2020

Pasadena, CA— A new kind of astronomical observation helped reveal the possible evolutionary history of a baby Neptune-like exoplanet.

To study a very young planet called DS Tuc Ab, a Harvard & Smithsonian Center for Astrophysics-led team that included six Carnegie astronomers—Johanna Teske, Sharon Wang, Stephen Shectman, Paul Butler, Jeff Crane, and Ian Thompson—developed a new observational modeling tool. Their work will be published in The Astrophysical Journal Letters and represents the first time the orbital tilt of a planet younger than 45 million years—or about 1/100th the age of the Solar System—has been measured.


No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed


Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments.