Wolf Frommer believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of glucose, sucrose, ammonium, amino acid, and nucleotide transport in plants.

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell’s outer membrane, which seals and protects all living cells, to the cell’s interior. These transported molecules include sugars, which can be used to fuel growth or to respond to chemical signals of activity or stress outside of the cell. Measuring the activity of transporter proteins in a living organism has been a challenge for scientists, because the methods are difficult, often require the use of radioactive tracers, and are hard to use in intact tissues and organs.

 Among other innovations, Frommer and his team developed so-called nano-sensors that, with advanced imaging methods, can measure metabolites in live plant and animal cells. This work helps to understand how plants distribute energy from leaves, the sites of photosynthesis, to roots and seeds.

Frommer and his team hypothesized that it may be possible to probe transport activity by spying on the structural rearrangements that a transporter undergoes as it moves its target molecule across the membrane barrier. They did this by encoding environmentally sensitive fluorescent tags in the cell’s DNA

Frommer works to solve both fundamental and real-world problems. His work provides the foundation for increasing the yield of crops and bolstering the world’s food supply. In addition to his basic research, Frommer was founder of the biotechnology company SYMPORE GmbH, in Tübingen, and was a founder and vice president of the Joint Bioenergy Institute’s Feedstocks Division, in Emeryville, CA. He was also a visiting faculty member at the Lawrence Berkeley National Laboratories.

Frommer joined Carnegie in 2003 as a staff member. Just four years later he became acting director of the department, a position that became permanent in 2009. In 2016, he stepped down as director to become a staff scientists again.  Before coming to Carnegie, Frommer was a full professor and Chair of Plant Physiology at the Eberhard-Karls-Universität Tübingen in Germany where he led a group of 80. He was also cofounder and director of the Center of Plant Molecular Biology in Tübingen, where he oversaw a staff of 150. For more see https://dpb.carnegiescience.edu/labs/frommer-lab

Scientific Area: 

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Max Planck Institute of Biochemistry
September 21, 2017

Stanford, CA— How do green algae grow so quickly?  Two new collaborations offer insight into how these organisms siphon carbon dioxide from the air for use in photosynthesis, a key factor in their ability to rapidly take over a swimming pool or pond. Understanding this process may someday help researchers improve the growth rate of agricultural crops such as wheat and rice.

In two studies published this week in the journal Cell, a Princeton-led team with collaborators from Carnegie and the Max Planck Institute of Biochemistry reported the first detailed inventory of the cellular compartment called the pyrenoid, which algae use to collect and concentrate carbon dioxide, making the

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 17, 2017

Palo Alto, CA— The red algae called Porphyra and its ancestors have thrived for millions of years in the harsh habitat of the intertidal zone—exposed to fluctuating temperatures, high UV radiation, severe salt stress, and desiccation.

Red algae comprise some of the oldest non-bacterial photosynthetic organisms on Earth, and one of the most-ancient of all multicellular lineages. They are also fundamentally integrated into human culture and economics around the globe. Some red algae play a major role in building coral reefs while others serve as “seaweed” foods that are integral to various societies. Porphyra is included in salads (as are related genera of algae), is called “nori”

June 21, 2017

Palo Alto, CA— Algae dominate the oceans that cover nearly three-quarters of our planet, and produce half of the oxygen that we breathe. And yet fewer than 10 percent of the algae have been formally described in the scientific literature, as noted in a new review co-authored by Carnegie’s Arthur Grossman in Trends in Plant Science.

Algae are everywhere. They are part of crusts on desert surfaces and form massive blooms in lakes and oceans. They range in size from tiny single-celled organisms to giant kelp.

Algae also play crucial roles in human life. People have eaten “seaweed” (large macroalgae) for millennia. But algae can also represent a health hazard when toxic blooms

June 15, 2017

Pew announced the 2017 classes of biomedical scholars, Latin American fellows, and Pew-Stewart Scholars for Cancer Research today. Cesar-Cuevas Velazquez of the Department of Plant Biology Dinneny lab is among 37 researchers selected.

These new researchers join more than 900 biomedical scientists from many different research backgrounds. “The scholars and fellows will gather at Pew’s annual meeting for the next four years to discuss their research, learn from peers in other fields, and form lasting bonds that will help propel and stimulate cutting-edge research, “stated the Pew press release.

Velazquez is a postdoctoral researcher in the Dinneny lab. He received his Ph. D.

No content in this section.

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to achieve broad, durable

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy evolution. Blanc conducts a series of research projects on the properties of young and distant galaxies, the large-scale structure of the universe, the nature of Dark Energy—the mysterious repulsive force, the process of star formation at galactic scales, and the measurement of chemical abundances in galaxies.

To conduct this work, he takes a multi-wavelength approach including observations in the UV,

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a