Yixian Zheng, director of the Department of Embryology, serves as co-interim president of Carnegie as of January 1, 2018. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use a wide range of tools, including genetics in different model organisms, cell culture, biochemistry, proteomics, and genomics.

Cell division is essential for all organisms to grow and live. During a specific time in a cell’s cycle the elongated apparatus consisting of string-like micro-tubules called the spindle is assembled to move the chromosomes into two new cells. Another structure near the cell’s nucleus, the centrosome, is important for creating the microtubules and for assembling the spindle. Researchers are trying to understand the regulation of the spindle assembly, the structure of the centrosome, and how it organizes the microtubules and participates in spindle assembly.

The scientists use the frog Xenopus for their research.  The centrosome consists of a pair of cylinder-shaped structures called centrioles, which are surrounded by a material called pericentriolar material (PCM). Microtubules arise from this PCM. The Zheng scientists discovered a ring complex containing an essential protein component of microtubules called γ -tubulin. They found that the ring complex, named γ TuRC, is essential for centrosomes to form microtubules. They also uncovered an important signaling pathway controlled by a protein made in the nucleolus called GTPase Ran that regulates multiple aspects of cell division.

To study genome organization in development and aging, they use various tools to study how genomes obtain their organization in stem cells and during development. To understand the influence of the process of the cell beginning to shape, called cell morphogenesis, on the eventual type of cell it turns into, the researchers use a technique called pre-implantation mouse embryos. The development of a pre-implanted embryo allows them to discern the first type of cell differentiation, or lineage specification, in a small number of initially similar cells independent of any influence from other tissues. By using live-imaging and computational modeling and tracking, they uncovered unique cellular behaviors that are associated with lineage specification during pre-implantation development, key to analyzing how various physical and chemical changes in the developing cell influence which genes are turned on.

Zheng was a Howard Hughes Medical Investigator from 2000 to 2012. She studied biology as an undergraduate in China before moving to Ohio State University where she received a PhD in 1992. She was a postdoctoral fellow at the University of California, San Francisco from 1992 to 1996, when she moved to Carnegie as a staff scientist and became Acting Director of the department in early 2016.  For more see the Zheng lab

Explore Carnegie Science

May 7, 2018

Baltimore, MD—Allan C. Spradling, Director Emeritus of Carnegie’s Department of Embryology, has been awarded the 23rd March of Dimes and Richard B. Johnson, Jr., MD Prize in Developmental Biology as “an outstanding scientist who has profoundly advanced the science that underlies our understanding of prenatal development and pregnancy.”

Department director and Carnegie co-interim president Yixian Zheng remarked, “Allan is a legend in developmental biology. We are all delighted by this well- deserved recognition of Allan’s groundbreaking research.”

Spradling’s decades of scientific accomplishments cover a broad spectrum of advancements. Since the early 20th century, the fruit

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Neta Schwartz
November 27, 2017

Washington, DC—Not too long ago, biologists would induce mutations in an entire genome, isolate an organism that displayed a resulting disease or abnormality that they wanted to study, and then work backward to determine which gene was responsible for the defect.  This process often took years to yield definitive results.

Now, thanks to the CRISPR/Cas9 genome-editing tool, biologists can target specific genes for mutation and then see how this induced mutation manifests in an organism—tackling the problem from the other direction. But they are finding that the expected physical changes don’t always occur.

Why?

New work from Carnegie’s Steven Farber and Jennifer

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 13, 2017

Baltimore, MD— The brain is the body’s mission control center, sending messages to the other organs about how to respond to various external and internal stimuli. Located in the forebrain, the habenular region is one such message-conducting system. Two new papers from Carnegie scientists explain how the habenulae develop and their unsuspected role in recovering from fear.

Found in all vertebrates, the bilaterally paired habenulae regulate the transmission of dopamine and serotonin, two important chemicals related to motor control, mood, and learning.

Previous research has shown that the habenular system is involved in modulating sleep cycles, anxiety, and pain and reward

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 6, 2017

Washington, D.C.--Yixian Zheng has been selected to direct Carnegie’s Department of Embryology in Baltimore, Maryland. She has been Acting Director since February 1st of 2016.

Carnegie president Matthew Scott remarked, “Yixian has been an exceptional leader of the department as Acting Director. We are extremely pleased that she took on this job permanently.  Her fascinating science, independent thinking, vision, extraordinary management skills, and perfect temperament are a tremendous asset to Carnegie Science.”

The Zheng lab has a long-standing interest in cell division and the cytoskeleton—the lattice arrangement of rods and fibers and motors that gives shape to cells and

No content in this section.

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling the

Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood. 

The Lepper lab studies the mechanics of these processes. overturned previous research that identified critical genes for making muscle stem cells. It turns out that the genes that make muscle stem cells in the embryo are surprisingly not needed in adult muscle stem cells to regenerate muscles after injury. The finding challenges the current course of research into muscular dystrophy, muscle

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

Staff member Nick Konidaris joined Carnegie in October 2017. He works on a variety of new optical instrumentation projects in astronomy. He  recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory. It is called the Rapid Response Swope Spectrograph and Imager (R2S2I). When operational, it will be a workhorse instrument and development platform.

Prior to Carnegie, he was director of product management at Kairos Aerospace in Mountain View, CA. Konidaris received a B.S. in physics from Carnegie Mellon University, and conducted coursework in electrical engineering before obtaining a Ph.D. in astrophysics from the

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that can be gleaned from mineral impurities preserved inside diamonds.

Walter had been at

Guoyin Shen's research interests lie in the quest to establish and to examine models for explaining and controlling the behavior of materials under extreme conditions. His research activities include investigation of phase transformations and melting lines in molecular solids, oxides and metals; polyamorphism in liquids and amorphous materials; new states of matter and their emergent properties under extreme conditions; and the development of enabling high-pressure synchrotron techniques for advancing compression science. 

He obtained a Ph.D. in mineral physics from Uppsala University, Sweden in 1994 and a B.S. in geochemistry from Zhejiang University, China in 1982. For more

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in Canada.